R. A. Davis, W. Angermeier, R. Hermsmeier, T. White
{"title":"Ion modes in dense ionized plasmas through nonadiabatic molecular dynamics","authors":"R. A. Davis, W. Angermeier, R. Hermsmeier, T. White","doi":"10.1103/PHYSREVRESEARCH.2.043139","DOIUrl":null,"url":null,"abstract":"We perform non-adiabatic simulations of warm dense aluminum based on the electron-force field (EFF) variant of wave-packet molecular dynamics. Comparison of the static ion-ion structure factor with density functional theory is used to validate the technique across a range of temperatures and densities spanning the warm dense matter regime. Differences in the dynamic structure factor and dispersion relation between adiabatic and non-adiabatic techniques suggest that the explicit inclusion of electrons is necessary to fully capture the low frequency dynamics of the response function.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.043139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We perform non-adiabatic simulations of warm dense aluminum based on the electron-force field (EFF) variant of wave-packet molecular dynamics. Comparison of the static ion-ion structure factor with density functional theory is used to validate the technique across a range of temperatures and densities spanning the warm dense matter regime. Differences in the dynamic structure factor and dispersion relation between adiabatic and non-adiabatic techniques suggest that the explicit inclusion of electrons is necessary to fully capture the low frequency dynamics of the response function.