Low Complexity MIMO Modulation Classification via Distribution Test Ensembles

Zikang Gao, Lingiun Zhu, Zhechen Zhu
{"title":"Low Complexity MIMO Modulation Classification via Distribution Test Ensembles","authors":"Zikang Gao, Lingiun Zhu, Zhechen Zhu","doi":"10.1109/ICCC47050.2019.9064103","DOIUrl":null,"url":null,"abstract":"Modulation classification in MIMO systems needs to overcome its complexity demand to be viable in a real world environment. The number of mathematics operations required by the state-of-the-art maximum likelihood classifier grows exponentially with the number of transmitting antennas and the orders of candidate modulations. In this paper, we propose a low complexity MIMO system modulation classifier by combining multiple magnitude-based distribution tests using a simple Multi-layer perceptron. The resulting solution provides good classification performance in AWGN channel while outperforming the maximum likelihood classifier in fading channels. Moreover, its computational complexity is much lower and does not scale with the number of transmitting antennas or the orders of candidate modulations.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"21 1","pages":"1548-1553"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modulation classification in MIMO systems needs to overcome its complexity demand to be viable in a real world environment. The number of mathematics operations required by the state-of-the-art maximum likelihood classifier grows exponentially with the number of transmitting antennas and the orders of candidate modulations. In this paper, we propose a low complexity MIMO system modulation classifier by combining multiple magnitude-based distribution tests using a simple Multi-layer perceptron. The resulting solution provides good classification performance in AWGN channel while outperforming the maximum likelihood classifier in fading channels. Moreover, its computational complexity is much lower and does not scale with the number of transmitting antennas or the orders of candidate modulations.
基于分布测试集成的低复杂度MIMO调制分类
MIMO系统中的调制分类需要克服其复杂性要求,才能在现实环境中可行。最先进的最大似然分类器所需的数学运算数量随着发射天线的数量和候选调制的顺序呈指数增长。在本文中,我们提出了一种低复杂度的MIMO系统调制分类器,通过结合多个基于幅度的分布测试,使用一个简单的多层感知器。所得到的解决方案在AWGN信道中具有良好的分类性能,同时在衰落信道中优于最大似然分类器。此外,它的计算复杂度低得多,并且不随发射天线数量或候选调制顺序的变化而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信