Poster: applying unsupervised context-based analysis for detecting unauthorized data disclosure

Ma'ayan Gafny, A. Shabtai, L. Rokach, Y. Elovici
{"title":"Poster: applying unsupervised context-based analysis for detecting unauthorized data disclosure","authors":"Ma'ayan Gafny, A. Shabtai, L. Rokach, Y. Elovici","doi":"10.1145/2046707.2093488","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new unsupervised approach for identifying suspicious access to sensitive relational data. In the proposed method, a tree-like model encapsulates the characteristics of the result-set (i.e., data) that the user normally access within each possible context. During the detection phase, result-sets are examined against the induced model and a similarity score is derived.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"69 1","pages":"765-768"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2093488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we propose a new unsupervised approach for identifying suspicious access to sensitive relational data. In the proposed method, a tree-like model encapsulates the characteristics of the result-set (i.e., data) that the user normally access within each possible context. During the detection phase, result-sets are examined against the induced model and a similarity score is derived.
海报:应用无监督的基于上下文的分析来检测未经授权的数据泄露
在本文中,我们提出了一种新的无监督方法来识别对敏感关系数据的可疑访问。在建议的方法中,树状模型封装了用户通常在每个可能上下文中访问的结果集(即数据)的特征。在检测阶段,根据诱导模型检查结果集并得出相似度分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信