Ion versus Electron Heating in Compressively Driven Astrophysical Gyrokinetic Turbulence

Y. Kawazura, A. Schekochihin, M. Barnes, J. TenBarge, Y. Tong, K. Klein, W. Dorland
{"title":"Ion versus Electron Heating in Compressively Driven Astrophysical Gyrokinetic Turbulence","authors":"Y. Kawazura, A. Schekochihin, M. Barnes, J. TenBarge, Y. Tong, K. Klein, W. Dorland","doi":"10.1103/physrevx.10.041050","DOIUrl":null,"url":null,"abstract":"The partition of irreversible heating between ions and electrons in compressively driven (but subsonic) collisionless turbulence is investigated by means of nonlinear gyrokinetic simulations. We derive a prescription for the ion-to-electron heating ratio $Q_{\\text{i}}/Q_{\\text{e}}$ as a function of the compressive-to-Alfvenic driving power ratio $P_{\\text{compr}}/P_{\\text{AW}}$, of the ratio of ion thermal pressure to magnetic pressure $\\beta_{\\text{i}}$, and of the ratio of ion-to-electron background temperatures $T_{\\text{i}}/T_{\\text{e}}$. It is shown that $Q_{\\text{i}}/Q_{\\text{e}}$ is an increasing function of $P_{\\text{compr}}/P_{\\text{AW}}$. When the compressive driving is sufficiently large, $Q_{\\text{i}}/Q_{\\text{e}}$ approaches $\\simeq P_{\\text{compr}}/P_{\\text{AW}}$. This indicates that, in turbulence with large compressive fluctuations, the partition of heating is decided at the injection scales, rather than at kinetic scales. Analysis of phase-space spectra shows that the energy transfer from inertial-range compressive fluctuations to sub-Larmor-scale kinetic Alfven waves is absent for both low and high $\\beta_{\\text{i}}$, meaning that the compressive driving is directly connected to the ion entropy fluctuations, which are converted into ion thermal energy. This result suggests that preferential electron heating is a very special case requiring low $\\beta_{\\text{i}}$ and no, or weak, compressive driving. Our heating prescription has wide-ranging applications, including to the solar wind and to hot accretion disks such as M87 and Sgr A*.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevx.10.041050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The partition of irreversible heating between ions and electrons in compressively driven (but subsonic) collisionless turbulence is investigated by means of nonlinear gyrokinetic simulations. We derive a prescription for the ion-to-electron heating ratio $Q_{\text{i}}/Q_{\text{e}}$ as a function of the compressive-to-Alfvenic driving power ratio $P_{\text{compr}}/P_{\text{AW}}$, of the ratio of ion thermal pressure to magnetic pressure $\beta_{\text{i}}$, and of the ratio of ion-to-electron background temperatures $T_{\text{i}}/T_{\text{e}}$. It is shown that $Q_{\text{i}}/Q_{\text{e}}$ is an increasing function of $P_{\text{compr}}/P_{\text{AW}}$. When the compressive driving is sufficiently large, $Q_{\text{i}}/Q_{\text{e}}$ approaches $\simeq P_{\text{compr}}/P_{\text{AW}}$. This indicates that, in turbulence with large compressive fluctuations, the partition of heating is decided at the injection scales, rather than at kinetic scales. Analysis of phase-space spectra shows that the energy transfer from inertial-range compressive fluctuations to sub-Larmor-scale kinetic Alfven waves is absent for both low and high $\beta_{\text{i}}$, meaning that the compressive driving is directly connected to the ion entropy fluctuations, which are converted into ion thermal energy. This result suggests that preferential electron heating is a very special case requiring low $\beta_{\text{i}}$ and no, or weak, compressive driving. Our heating prescription has wide-ranging applications, including to the solar wind and to hot accretion disks such as M87 and Sgr A*.
压缩驱动的天体物理回旋动力学湍流中的离子与电子加热
采用非线性陀螺动力学模拟方法研究了压缩驱动(亚音速)无碰撞湍流中离子和电子之间不可逆加热的分配。我们推导出离子与电子加热比$Q_{\text{i}}/Q_{\text{e}}$的公式,它是压缩与阿尔夫尼驱动功率比$P_{\text{compr}}/P_{\text{AW}}$、离子热压与磁压之比$\beta_{\text{i}}$和离子与电子背景温度之比$T_{\text{i}}/T_{\text{e}}$的函数。结果表明,$Q_{\text{i}}/Q_{\text{e}}$是$P_{\text{compr}}/P_{\text{AW}}$的递增函数。当压缩驱动足够大时,$Q_{\text{i}}/Q_{\text{e}}$趋于$\simeq P_{\text{compr}}/P_{\text{AW}}$。这表明,在压缩波动较大的湍流中,加热的分配是在注入尺度上而不是在动力学尺度上决定的。相空间谱分析表明,在低、高水平$\beta_{\text{i}}$均不存在从惯性范围的压缩波动向亚larmorer尺度的动力学Alfven波的能量传递,这意味着压缩驱动与离子熵波动直接相关,并将其转化为离子热能。这一结果表明,优先电子加热是非常特殊的情况,需要低$\beta_{\text{i}}$和无或弱压缩驱动。我们的加热处方有广泛的应用,包括太阳风和热吸积盘,如M87和Sgr A*。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信