spfilteR: An R package for Semiparametric Spatial Filtering with Eigenvectors in (Generalized) Linear Models

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-085
Sebastian Juhl
{"title":"spfilteR: An R package for Semiparametric Spatial Filtering with Eigenvectors in (Generalized) Linear Models","authors":"Sebastian Juhl","doi":"10.32614/rj-2021-085","DOIUrl":null,"url":null,"abstract":"Eigenvector-based spatial filtering constitutes a highly flexible semiparametric approach to account for spatial autocorrelation in a regression framework. It combines judiciously selected eigenvectors from a transformed connectivity matrix to construct a synthetic spatial filter and remove spatial patterns from model residuals. This article introduces the spfilteR package that provides several useful and flexible tools to estimate spatially filtered linear and generalized linear models in R. While the package features functions to identify relevant eigenvectors based on different selection criteria in an unsupervised fashion, it also helps users to perform supervised spatial filtering and to select eigenvectors based on alternative user-defined criteria. After a brief discussion of the eigenvectorbased spatial filtering approach, this article presents the main functions of the package and illustrates their usage. A comparison to alternative implementations in other R packages highlights the added value of the spfilteR package.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"95 1","pages":"380"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Eigenvector-based spatial filtering constitutes a highly flexible semiparametric approach to account for spatial autocorrelation in a regression framework. It combines judiciously selected eigenvectors from a transformed connectivity matrix to construct a synthetic spatial filter and remove spatial patterns from model residuals. This article introduces the spfilteR package that provides several useful and flexible tools to estimate spatially filtered linear and generalized linear models in R. While the package features functions to identify relevant eigenvectors based on different selection criteria in an unsupervised fashion, it also helps users to perform supervised spatial filtering and to select eigenvectors based on alternative user-defined criteria. After a brief discussion of the eigenvectorbased spatial filtering approach, this article presents the main functions of the package and illustrates their usage. A comparison to alternative implementations in other R packages highlights the added value of the spfilteR package.
spfilteR:一个用于(广义)线性模型中特征向量的半参数空间滤波的R包
基于特征向量的空间滤波构成了一种高度灵活的半参数方法来解释回归框架中的空间自相关。它结合从转换的连通性矩阵中明智地选择特征向量来构建一个合成空间滤波器,并从模型残差中去除空间模式。本文介绍了spfilteR包,它提供了几个有用和灵活的工具来估计r中的空间过滤线性和广义线性模型。虽然该包的功能以无监督的方式基于不同的选择标准识别相关的特征向量,但它还帮助用户执行监督空间过滤并根据其他用户定义的标准选择特征向量。在简要讨论了基于特征向量的空间滤波方法之后,本文介绍了该包的主要功能并说明了它们的使用方法。与其他R包中的替代实现的比较突出了spfilteR包的附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信