{"title":"Ground state of the Fermi gas on 2D lattices with a magnetic field","authors":"R. Rammal, J. Bellissard","doi":"10.1051/JPHYS:0199000510190215300","DOIUrl":null,"url":null,"abstract":"The energy of 2D Bloch electrons in a magnetic field is studied as a function of the filling fractions ν and the magnetic flux φ. Using a new semi-classical quantization method the total energy E(φ,ν) is calculated and shown to have an absolute minimum which corresponds to one flux quantum per particle. This optimal flux phenomenon is shown to occur under large conditions and for different lattices. An explicit cusp-like behavior of E vs. φ at fixed ν is found both for the absolute and for the relative minima of E. Furthermore, the ground state energy is shown to be a smooth function of ν. The implications of our results for the stabilization of Anyons and the flux states are discussed On etudie l'energie des electrons de Bloch sous champ magnetique en fonction du flux magnetique φ et du taux de remplissage ν. On calcule l'energie totale E (φ,ν) a l'aide d'une nouvelle methode de quantification semi-classique. Le minimum absolu est atteint pour un choix optimal d'un quantum de flux par particule. Ce phenomene se produit pour differents reseaux et sous des conditions assez generales. Pour ν fixe, l'energie est une ligne brisee en fonction de φ. Toutefois, l'energie du fondamental est une fonction reguliere de ν. Les implications de ces resultats pour la stabilisation des Anyons et les phases de flux sont discutees","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"19 1","pages":"2153-2165"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510190215300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The energy of 2D Bloch electrons in a magnetic field is studied as a function of the filling fractions ν and the magnetic flux φ. Using a new semi-classical quantization method the total energy E(φ,ν) is calculated and shown to have an absolute minimum which corresponds to one flux quantum per particle. This optimal flux phenomenon is shown to occur under large conditions and for different lattices. An explicit cusp-like behavior of E vs. φ at fixed ν is found both for the absolute and for the relative minima of E. Furthermore, the ground state energy is shown to be a smooth function of ν. The implications of our results for the stabilization of Anyons and the flux states are discussed On etudie l'energie des electrons de Bloch sous champ magnetique en fonction du flux magnetique φ et du taux de remplissage ν. On calcule l'energie totale E (φ,ν) a l'aide d'une nouvelle methode de quantification semi-classique. Le minimum absolu est atteint pour un choix optimal d'un quantum de flux par particule. Ce phenomene se produit pour differents reseaux et sous des conditions assez generales. Pour ν fixe, l'energie est une ligne brisee en fonction de φ. Toutefois, l'energie du fondamental est une fonction reguliere de ν. Les implications de ces resultats pour la stabilisation des Anyons et les phases de flux sont discutees