Interpretability and Reproducability in Production Machine Learning Applications

Sindhu Ghanta, Sriram Ganapathi Subramanian, S. Sundararaman, L. Khermosh, Vinay Sridhar, D. Arteaga, Q. Luo, Dhananjoy Das, Nisha Talagala
{"title":"Interpretability and Reproducability in Production Machine Learning Applications","authors":"Sindhu Ghanta, Sriram Ganapathi Subramanian, S. Sundararaman, L. Khermosh, Vinay Sridhar, D. Arteaga, Q. Luo, Dhananjoy Das, Nisha Talagala","doi":"10.1109/ICMLA.2018.00105","DOIUrl":null,"url":null,"abstract":"Explainability/Interpretability in machine learning applications is becoming critical, with legal and industry requirements demanding human understandable machine learning results. We describe the additional complexities that occur when a known interpretability technique (canary models) is applied to a real production scenario. We furthermore argue that reproducibility is a key feature in practical usages of such interpretability techniques in production scenarios. With this motivation, we present a production ML reproducibility solution, namely a comprehensive time ordered event sequence for machine learning applications. We demonstrate how our approach can bring this known common interpretability technique into production viability. We further present the system design and early performance characteristics of our reproducibility solution.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"78 1","pages":"658-664"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Explainability/Interpretability in machine learning applications is becoming critical, with legal and industry requirements demanding human understandable machine learning results. We describe the additional complexities that occur when a known interpretability technique (canary models) is applied to a real production scenario. We furthermore argue that reproducibility is a key feature in practical usages of such interpretability techniques in production scenarios. With this motivation, we present a production ML reproducibility solution, namely a comprehensive time ordered event sequence for machine learning applications. We demonstrate how our approach can bring this known common interpretability technique into production viability. We further present the system design and early performance characteristics of our reproducibility solution.
生产机器学习应用中的可解释性和可再现性
机器学习应用的可解释性/可解释性正变得越来越重要,法律和行业要求人类可以理解机器学习的结果。我们描述了将已知的可解释性技术(金丝雀模型)应用于实际生产场景时出现的额外复杂性。我们进一步认为,再现性是这种可解释性技术在生产场景中的实际使用的关键特征。基于这一动机,我们提出了一种生产ML再现性解决方案,即用于机器学习应用的综合时间顺序事件序列。我们将演示我们的方法如何将这种已知的通用可解释性技术引入生产可行性。我们进一步介绍了系统设计和我们的再现性解决方案的早期性能特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信