Inhibitory effect of cysteine and lanthanides on AA7075‐T6 in neutral NaCl solution

Jovana Pejić, Bojana M. Radojković, Dunja Marunkić, B. Jegdić, S. Stevanović, Milena Milošević, J. Bajat
{"title":"Inhibitory effect of cysteine and lanthanides on AA7075‐T6 in neutral NaCl solution","authors":"Jovana Pejić, Bojana M. Radojković, Dunja Marunkić, B. Jegdić, S. Stevanović, Milena Milošević, J. Bajat","doi":"10.1002/maco.202213330","DOIUrl":null,"url":null,"abstract":"The inhibitory effect of cysteine in the presence of selected lanthanide chlorides (LaCl3, NdCl3, and CeCl3) in a neutral 0.1 M NaCl solution was analyzed. The cysteine concentration of 0.3 mM was determined as an optimal one. The resistance to general and pitting corrosion of AA7075‐T6 alloy in inhibitive solutions was determined using electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The surface appearance of the aluminum alloy was determined before and after corrosion tests using scanning electron microscopy/energy dispersive spectroscopy, while the presence of an inhibitory layer on the alloy surface was confirmed by X‐ray photoelectron spectroscopy analysis and atomic force microscopy. The inhibitory effect of cysteine was significantly higher in the presence of all tested lanthanide chlorides, especially to pitting corrosion. The protective ability of cysteine was increased by lanthanides in the following sequence: Ln < Nd < Ce ions. The inhibitory effect of cysteine in the presence of cerium ions was examined in more detail as cerium ions provided the highest inhibitory effect, both to general and pitting corrosion.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"15 1","pages":"1800 - 1812"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202213330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The inhibitory effect of cysteine in the presence of selected lanthanide chlorides (LaCl3, NdCl3, and CeCl3) in a neutral 0.1 M NaCl solution was analyzed. The cysteine concentration of 0.3 mM was determined as an optimal one. The resistance to general and pitting corrosion of AA7075‐T6 alloy in inhibitive solutions was determined using electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The surface appearance of the aluminum alloy was determined before and after corrosion tests using scanning electron microscopy/energy dispersive spectroscopy, while the presence of an inhibitory layer on the alloy surface was confirmed by X‐ray photoelectron spectroscopy analysis and atomic force microscopy. The inhibitory effect of cysteine was significantly higher in the presence of all tested lanthanide chlorides, especially to pitting corrosion. The protective ability of cysteine was increased by lanthanides in the following sequence: Ln < Nd < Ce ions. The inhibitory effect of cysteine in the presence of cerium ions was examined in more detail as cerium ions provided the highest inhibitory effect, both to general and pitting corrosion.
半胱氨酸和镧系元素对中性NaCl溶液中AA7075‐T6的抑制作用
分析了在中性0.1 M NaCl溶液中,选择镧系氯化物(LaCl3、NdCl3和CeCl3)存在时,半胱氨酸的抑制作用。半胱氨酸的最佳浓度为0.3 mM。采用电化学阻抗谱法和动电位极化法测定了AA7075‐T6合金在缓蚀剂溶液中的抗一般腐蚀和点蚀性能。采用扫描电镜/能量色散光谱法测定了腐蚀前后铝合金的表面形貌,同时通过X射线光电子能谱分析和原子力显微镜法证实了合金表面存在抑制层。在所有被测镧系氯化物存在的情况下,半胱氨酸的抑制作用明显更高,尤其是对点蚀的抑制作用。镧系元素对半胱氨酸的保护能力增强的顺序为:Ln < Nd < Ce。对于半胱氨酸在铈离子存在下的抑制作用进行了更详细的研究,因为铈离子对一般腐蚀和点蚀都具有最高的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信