{"title":"Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls","authors":"A. Kaveh, Neda Khavaninzadeh","doi":"10.3311/ppci.22653","DOIUrl":null,"url":null,"abstract":"In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22653","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.