Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Kaveh, Neda Khavaninzadeh
{"title":"Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls","authors":"A. Kaveh, Neda Khavaninzadeh","doi":"10.3311/ppci.22653","DOIUrl":null,"url":null,"abstract":"In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22653","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.
部分注浆砌体墙体抗剪强度的ECBO-ANN混合算法
近年来,人工神经网络(ANN)已成为流行和有效的机器学习模型之一,具有处理非常复杂问题的独特能力,并且具有在没有定义算法解决方案的情况下预测准确结果的潜力。然而,人工神经网络的结构和参数通常是根据经验选择的。由于砌体材料固有的各向异性以及砂浆、砌块、灌浆单元、非灌浆单元和钢筋之间的非线性相互作用,部分灌浆砌体剪力墙的性能非常复杂。本研究的目的是将ECBO元启发式算法与人工神经网络结构相结合,建立人工神经网络模型,优化前馈传播网络参数,用于分析PG墙的抗剪强度。从现有文献中收集的255个PG测试数据用于生成训练和测试数据集。采用均方误差、均方根误差和相关系数(R)等验证标准对模型进行验证。在本研究中,得到了隐层中使用的最优神经元数以及ECBO算法中所需的最优CBs数。并结合元启发式算法给出了优化后的神经网络模型的数学表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信