Clustering of Short Text in Micro-blog Based on K-means Algorithm

Ma Xingliang, Li Fangfang
{"title":"Clustering of Short Text in Micro-blog Based on K-means Algorithm","authors":"Ma Xingliang, Li Fangfang","doi":"10.1109/IICSPI.2018.8690507","DOIUrl":null,"url":null,"abstract":"Based on K-means algorithm, this paper proposed a short text clustering method. First of all, data of short texts on the Internet are collected by using the web crawler. Then, they are preprocessed, for example, irrelevant contents like noisy data, punctuation and stop words, are removed. After that, word segmentation is carried out on the preprocessed short texts, and distributed expression is carried out on the segmented words. Finally, these texts are clustered and sorted on the basis of K-means algorithm. According to the experiment results, methods put forward in the paper are appropriate for short text clustering.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"145 1","pages":"812-815"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on K-means algorithm, this paper proposed a short text clustering method. First of all, data of short texts on the Internet are collected by using the web crawler. Then, they are preprocessed, for example, irrelevant contents like noisy data, punctuation and stop words, are removed. After that, word segmentation is carried out on the preprocessed short texts, and distributed expression is carried out on the segmented words. Finally, these texts are clustered and sorted on the basis of K-means algorithm. According to the experiment results, methods put forward in the paper are appropriate for short text clustering.
基于K-means算法的微博短文本聚类
基于K-means算法,提出了一种短文本聚类方法。首先,利用网络爬虫收集互联网上的短文本数据。然后,对它们进行预处理,例如去除不相关的内容,如噪声数据、标点符号和停止词。然后对预处理后的短文本进行分词,对分词后的词进行分布式表达。最后,基于K-means算法对这些文本进行聚类和排序。实验结果表明,本文提出的方法适用于短文本聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信