Towards Action-State Process Model Discovery

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
A. Bottrighi, Marco Guazzone, G. Leonardi, S. Montani, Manuel Striani, P. Terenziani
{"title":"Towards Action-State Process Model Discovery","authors":"A. Bottrighi, Marco Guazzone, G. Leonardi, S. Montani, Manuel Striani, P. Terenziani","doi":"10.3390/data8080130","DOIUrl":null,"url":null,"abstract":"Process model discovery covers the different methodologies used to mine a process model from traces of process executions, and it has an important role in artificial intelligence research. Current approaches in this area, with a few exceptions, focus on determining a model of the flow of actions only. However, in several contexts, (i) restricting the attention to actions is quite limiting, since the effects of such actions also have to be analyzed, and (ii) traces provide additional pieces of information in the form of states (i.e., values of parameters possibly affected by the actions); for instance, in several medical domains, the traces include both actions and measurements of patient parameters. In this paper, we propose AS-SIM (Action-State SIM), the first approach able to mine a process model that comprehends two distinct classes of nodes, to capture both actions and states.","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"14 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Data and Nuclear Data Tables","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/data8080130","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Process model discovery covers the different methodologies used to mine a process model from traces of process executions, and it has an important role in artificial intelligence research. Current approaches in this area, with a few exceptions, focus on determining a model of the flow of actions only. However, in several contexts, (i) restricting the attention to actions is quite limiting, since the effects of such actions also have to be analyzed, and (ii) traces provide additional pieces of information in the form of states (i.e., values of parameters possibly affected by the actions); for instance, in several medical domains, the traces include both actions and measurements of patient parameters. In this paper, we propose AS-SIM (Action-State SIM), the first approach able to mine a process model that comprehends two distinct classes of nodes, to capture both actions and states.
迈向动作状态过程模型发现
过程模型发现涵盖了用于从过程执行的痕迹中挖掘过程模型的不同方法,它在人工智能研究中具有重要作用。除了少数例外,该领域的当前方法只关注于确定操作流的模型。然而,在某些情况下,(i)将注意力限制在动作上是相当有限的,因为这些动作的效果也必须被分析,(ii)轨迹以状态的形式提供额外的信息(即可能受动作影响的参数值);例如,在一些医学领域中,轨迹包括动作和患者参数的测量。在本文中,我们提出了AS-SIM(动作状态SIM),这是第一种能够挖掘包含两种不同类型节点的过程模型的方法,以捕获动作和状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atomic Data and Nuclear Data Tables
Atomic Data and Nuclear Data Tables 物理-物理:核物理
CiteScore
4.50
自引率
11.10%
发文量
27
审稿时长
47 days
期刊介绍: Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive ... click here for full Aims & Scope Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive and comprehensive compilations of experimental and theoretical results are featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信