An electrostatic interpretation of the zeros of sieved ultraspherical polynomials

K. Castillo, M. N. de Jesus, J. Petronilho
{"title":"An electrostatic interpretation of the zeros of sieved ultraspherical polynomials","authors":"K. Castillo, M. N. de Jesus, J. Petronilho","doi":"10.1063/1.5063333","DOIUrl":null,"url":null,"abstract":"In a companion paper [On semiclassical orthogonal polynomials via polynomial mappings, J. Math. Anal. Appl. (2017)] we proved that the semiclassical class of orthogonal polynomials is stable under polynomial transformations. In this work we use this fact to derive in an unified way old and new properties concerning the sieved ultraspherical polynomials of the first and second kind. In particular we derive ordinary differential equations for these polynomials. As an application, we use the differential equation for sieved ultraspherical polynomials of the first kind to deduce that the zeros of these polynomials mark the locations of a set of particles that are in electrostatic equilibrium with respect to a particular external field.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5063333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In a companion paper [On semiclassical orthogonal polynomials via polynomial mappings, J. Math. Anal. Appl. (2017)] we proved that the semiclassical class of orthogonal polynomials is stable under polynomial transformations. In this work we use this fact to derive in an unified way old and new properties concerning the sieved ultraspherical polynomials of the first and second kind. In particular we derive ordinary differential equations for these polynomials. As an application, we use the differential equation for sieved ultraspherical polynomials of the first kind to deduce that the zeros of these polynomials mark the locations of a set of particles that are in electrostatic equilibrium with respect to a particular external field.
筛选的超球面多项式的零的静电解释
在一篇伴写论文[j]:半经典正交多项式的多项式映射,数学。分析的达成。(2017)]证明了正交多项式的半经典类在多项式变换下是稳定的。在这项工作中,我们利用这一事实,以统一的方式推导出关于第一类和第二类超球面多项式的新旧性质。特别地,我们推导出这些多项式的常微分方程。作为一个应用,我们使用第一类筛选的超球面多项式的微分方程来推断,这些多项式的零点标志着一组粒子的位置,这些粒子相对于特定的外场处于静电平衡状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信