On the local convergence of efficient Newton-type solvers with frozen derivatives for nonlinear equations

IF 0.9 Q3 MATHEMATICS, APPLIED
Ramandeep Behl, Ioannis K. Argyros, Christopher I. Argyros
{"title":"On the local convergence of efficient Newton-type solvers with frozen derivatives for nonlinear equations","authors":"Ramandeep Behl,&nbsp;Ioannis K. Argyros,&nbsp;Christopher I. Argyros","doi":"10.1002/cmm4.1184","DOIUrl":null,"url":null,"abstract":"<p>The aim of this article is to study the local convergence of a generalized <math>\n <mrow>\n <mi>m</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow></math>-step solver with nondecreasing order of convergence <math>\n <mrow>\n <mn>3</mn>\n <mi>m</mi>\n <mo>+</mo>\n <mn>3</mn>\n </mrow></math>. Sharma and Kumar gave the order of convergence using Taylor series expansions and derivatives up to the order <math>\n <mrow>\n <mn>3</mn>\n <mi>m</mi>\n <mo>+</mo>\n <mn>4</mn>\n </mrow></math> that do not appear in the method. Hence, the applicability of it is very limited. The novelty of our article is that we use only the first derivative in our local convergence (that only appears on the proposed method). Error bounds and uniqueness results not given earlier are also provided based on <i>q</i>-continuity functions. We also work with Banach space instead of Euclidean space valued operators. This way the applicability of the solver is extended. Applications where the convergence criteria are tested to complete this article.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to study the local convergence of a generalized m + 2 -step solver with nondecreasing order of convergence 3 m + 3 . Sharma and Kumar gave the order of convergence using Taylor series expansions and derivatives up to the order 3 m + 4 that do not appear in the method. Hence, the applicability of it is very limited. The novelty of our article is that we use only the first derivative in our local convergence (that only appears on the proposed method). Error bounds and uniqueness results not given earlier are also provided based on q-continuity functions. We also work with Banach space instead of Euclidean space valued operators. This way the applicability of the solver is extended. Applications where the convergence criteria are tested to complete this article.

非线性方程具有冻结导数的有效牛顿型解的局部收敛性
本文的目的是研究一类收敛阶为3 m + 3的非降阶广义m + 2步解的局部收敛性。Sharma和Kumar利用泰勒级数展开给出了收敛的阶数,以及在该方法中没有出现的3m + 4阶的导数。因此,它的适用性是非常有限的。本文的新颖之处在于我们在局部收敛中只使用了一阶导数(这只出现在所提出的方法中)。基于q-连续性函数,给出了之前没有给出的误差界和唯一性结果。我们也使用巴拿赫空间而不是欧几里得空间值算子。这样就扩展了求解器的适用性。为完成本文,测试了收敛标准的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信