Nonlinear Topological Pumping in Momentum Space Lattice of Ultracold atoms

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Yuan Tao, Dai Han-Ning, Chen Yu-Ao
{"title":"Nonlinear Topological Pumping in Momentum Space Lattice of Ultracold atoms","authors":"Yuan Tao, Dai Han-Ning, Chen Yu-Ao","doi":"10.7498/aps.72.20230740","DOIUrl":null,"url":null,"abstract":"Topological pumping enables the quantized transport of matter waves through an adiabatic evolution of the system, which plays an essential role in the applications of transferring quantum states and exploring the topological properties in higher-dimensional quantum systems. Recently, exploring the interplay between novel topological pumping and interactions has attracted growing attention in topological systems, such as nonlinear topological pumping induced by interactions. So far, the experimental realizations of the nonlinear topological pumps have been realized only in the optical waveguide systems with Kerr nonlinearity. It is still necessary to further explore the phenomenon in different systems. Here, we present an experimental proposal for realizing the nonlinear topological pumping via a one-dimensional (1D) off-diagonal Aubry-André-Harper (AAH) model with mean-field interactions in the momentum space lattice of ultracold atoms. In particular, we develop a numerical method for calculating the energy band of the nonlinear systems. With numerical calculations, we first solve the nonlinear energy band structure and soliton solution of the 1D nonlinear off-diagonal AAH model in the region of weak interaction strengths. The result shows that the lowest or the highest energy band is modulated in the nonlinear system of g>0 or g<0, respectively. The eigenstates of the associated energy bands have the features of the soliton solutions. We then show that the topological pumping of solitons exhibits quantized transport characteristics. Moreover, we numerically calculate the Chern number associated with the lowest and highest energy bands at different interaction strengths. The result shows that the quantized transport of solitons is determined by the Chern number of the associated energy band of the system from which solitons emanate. Finally, we propose a nonlinear topological pumping scheme based on a momentum lattice experimental system with 7Li atoms. We can prepare the initial state, which is approximately the distribution of the soliton state of the lowest energy band, and calculate the dynamical evolution of this initial state in the case of U>0. Also, we analyzethe influence of adiabatic evolution conditions on the pumping process, demonstrating the feasibility of nonlinear topological pumping in the momentum lattice system. Our study provides a feasible route for investigating nonlinear topological pumping in ultracold atom systems, which is helpful for further exploring the topological transport in nonlinear systems, such as topological phase transitions and edge effects induced by nonlinearity.","PeriodicalId":6995,"journal":{"name":"物理学报","volume":"67 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20230740","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological pumping enables the quantized transport of matter waves through an adiabatic evolution of the system, which plays an essential role in the applications of transferring quantum states and exploring the topological properties in higher-dimensional quantum systems. Recently, exploring the interplay between novel topological pumping and interactions has attracted growing attention in topological systems, such as nonlinear topological pumping induced by interactions. So far, the experimental realizations of the nonlinear topological pumps have been realized only in the optical waveguide systems with Kerr nonlinearity. It is still necessary to further explore the phenomenon in different systems. Here, we present an experimental proposal for realizing the nonlinear topological pumping via a one-dimensional (1D) off-diagonal Aubry-André-Harper (AAH) model with mean-field interactions in the momentum space lattice of ultracold atoms. In particular, we develop a numerical method for calculating the energy band of the nonlinear systems. With numerical calculations, we first solve the nonlinear energy band structure and soliton solution of the 1D nonlinear off-diagonal AAH model in the region of weak interaction strengths. The result shows that the lowest or the highest energy band is modulated in the nonlinear system of g>0 or g<0, respectively. The eigenstates of the associated energy bands have the features of the soliton solutions. We then show that the topological pumping of solitons exhibits quantized transport characteristics. Moreover, we numerically calculate the Chern number associated with the lowest and highest energy bands at different interaction strengths. The result shows that the quantized transport of solitons is determined by the Chern number of the associated energy band of the system from which solitons emanate. Finally, we propose a nonlinear topological pumping scheme based on a momentum lattice experimental system with 7Li atoms. We can prepare the initial state, which is approximately the distribution of the soliton state of the lowest energy band, and calculate the dynamical evolution of this initial state in the case of U>0. Also, we analyzethe influence of adiabatic evolution conditions on the pumping process, demonstrating the feasibility of nonlinear topological pumping in the momentum lattice system. Our study provides a feasible route for investigating nonlinear topological pumping in ultracold atom systems, which is helpful for further exploring the topological transport in nonlinear systems, such as topological phase transitions and edge effects induced by nonlinearity.
超冷原子动量空间晶格中的非线性拓扑抽运
拓扑抽运使物质波能够通过系统的绝热演化进行量子化输运,这在高维量子系统中量子态转移和拓扑性质探索的应用中具有重要作用。近年来,探索新型拓扑抽运与相互作用之间的相互作用在拓扑系统中引起了越来越多的关注,例如由相互作用引起的非线性拓扑抽运。到目前为止,非线性拓扑泵浦的实验实现仅在克尔非线性光波导系统中实现。这一现象在不同系统中还有待进一步探讨。本文提出了一种利用一维非对角线aubry - andr - harper (AAH)模型实现超冷原子动量空间晶格中具有平均场相互作用的非线性拓扑抽运的实验方案。特别地,我们发展了一种计算非线性系统能带的数值方法。通过数值计算,首先求解了一维非线性非对角AAH模型在弱相互作用强度区域的非线性带结构和孤子解。结果表明,在g>、g>和g>的非线性系统中,最低能带和最高能带被调制。此外,我们还分析了绝热演化条件对抽运过程的影响,证明了非线性拓扑抽运在动量晶格系统中的可行性。本研究为研究超冷原子系统中的非线性拓扑抽运提供了一条可行的途径,有助于进一步探索非线性系统中的拓扑输运,如非线性引起的拓扑相变和边缘效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理学报
物理学报 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信