Some Models of the Finite Hyperbolic Geometry and the Finite Hyperbolic Plane

Jinan F. Al-Jobory
{"title":"Some Models of the Finite Hyperbolic Geometry and the Finite Hyperbolic Plane","authors":"Jinan F. Al-Jobory","doi":"10.22401/anjs.25.4.10","DOIUrl":null,"url":null,"abstract":"In this paper, two important models for the finite hyperbolic plane (finite Bolyai-Lobachevsky plane) Bn, m will be given, the first model is when n=3andm=3, while the second model is when n=3andm=4.Also, two important models for the finite hyperbolic geometry (finite Bolyai-Lobachevsky geometry)are given, the first model is when each line contains either 4 or 3 distinct points and each point is on 6distinct lines, while the second model is when each line contains either 3 or 2 distinct points and each point is on either 7 or 8 lines. All models are represented in a simple form, which help the readers and researchers to understand the different factsabout the finite Bolyai-Lobachevsky plane and the finite Bolyai-Lobachevsky geometry.","PeriodicalId":7494,"journal":{"name":"Al-Nahrain Journal of Science","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/anjs.25.4.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, two important models for the finite hyperbolic plane (finite Bolyai-Lobachevsky plane) Bn, m will be given, the first model is when n=3andm=3, while the second model is when n=3andm=4.Also, two important models for the finite hyperbolic geometry (finite Bolyai-Lobachevsky geometry)are given, the first model is when each line contains either 4 or 3 distinct points and each point is on 6distinct lines, while the second model is when each line contains either 3 or 2 distinct points and each point is on either 7 or 8 lines. All models are represented in a simple form, which help the readers and researchers to understand the different factsabout the finite Bolyai-Lobachevsky plane and the finite Bolyai-Lobachevsky geometry.
有限双曲几何和有限双曲平面的一些模型
本文给出了有限双曲平面(有限bolyay - lobachevsky平面)Bn, m的两个重要模型,第一个模型是n=3和m=3时的模型,第二个模型是n=3和m=4时的模型。同时,给出了有限双曲几何(有限博利亚-洛巴切夫斯基几何)的两种重要模型,第一种模型是当每条线包含4或3个不同的点,每个点在6条不同的线上,而第二种模型是当每条线包含3或2个不同的点,每个点在7或8条线上。所有的模型都以一种简单的形式表示,这有助于读者和研究人员理解有限波利亚-罗巴切夫斯基平面和有限波利亚-罗巴切夫斯基几何的不同事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信