A blow-up result for the wave equation with localized initial data: the scale-invariant damping and mass term with combined nonlinearities

M. Hamouda, M. Hamza
{"title":"A blow-up result for the wave equation with localized initial data: the scale-invariant damping and mass term with combined nonlinearities","authors":"M. Hamouda, M. Hamza","doi":"10.22541/au.160395665.59674549/v1","DOIUrl":null,"url":null,"abstract":"We are interested in this article in studying the damped wave equation with localized initial data, in the \\textit{scale-invariant case} with mass term and two combined nonlinearities. More precisely, we consider the following equation: $$ (E) {1cm} u_{tt}-\\Delta u+\\frac{\\mu}{1+t}u_t+\\frac{\\nu^2}{(1+t)^2}u=|u_t|^p+|u|^q, \\quad \\mbox{in}\\ \\mathbb{R}^N\\times[0,\\infty), $$ with small initial data. Under some assumptions on the mass and damping coefficients, $\\nu$ and $\\mu>0$, respectively, we show that blow-up region and the lifespan bound of the solution of $(E)$ remain the same as the ones obtained in \\cite{Our2} in the case of a mass-free wave equation, it i.e. $(E)$ with $\\nu=0$. \nFurthermore, using in part the computations done for $(E)$, we enhance the result in \\cite{Palmieri} on the Glassey conjecture for the solution of $(E)$ with omitting the nonlinear term $|u|^q$. Indeed, the blow-up region is extended from $p \\in (1, p_G(N+\\sigma)]$, where $\\sigma$ is given by (1.12) below, to $p \\in (1, p_G(N+\\mu)]$ yielding, hence, a better estimate of the lifespan when $(\\mu-1)^2-4\\nu^2<1$. Otherwise, the two results coincide. Finally, we may conclude that the mass term {\\it has no influence} on the dynamics of $(E)$ (resp. $(E)$ without the nonlinear term $|u|^q$), and the conjecture we made in \\cite{Our2} on the threshold between the blow-up and the global existence regions obtained holds true here.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22541/au.160395665.59674549/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We are interested in this article in studying the damped wave equation with localized initial data, in the \textit{scale-invariant case} with mass term and two combined nonlinearities. More precisely, we consider the following equation: $$ (E) {1cm} u_{tt}-\Delta u+\frac{\mu}{1+t}u_t+\frac{\nu^2}{(1+t)^2}u=|u_t|^p+|u|^q, \quad \mbox{in}\ \mathbb{R}^N\times[0,\infty), $$ with small initial data. Under some assumptions on the mass and damping coefficients, $\nu$ and $\mu>0$, respectively, we show that blow-up region and the lifespan bound of the solution of $(E)$ remain the same as the ones obtained in \cite{Our2} in the case of a mass-free wave equation, it i.e. $(E)$ with $\nu=0$. Furthermore, using in part the computations done for $(E)$, we enhance the result in \cite{Palmieri} on the Glassey conjecture for the solution of $(E)$ with omitting the nonlinear term $|u|^q$. Indeed, the blow-up region is extended from $p \in (1, p_G(N+\sigma)]$, where $\sigma$ is given by (1.12) below, to $p \in (1, p_G(N+\mu)]$ yielding, hence, a better estimate of the lifespan when $(\mu-1)^2-4\nu^2<1$. Otherwise, the two results coincide. Finally, we may conclude that the mass term {\it has no influence} on the dynamics of $(E)$ (resp. $(E)$ without the nonlinear term $|u|^q$), and the conjecture we made in \cite{Our2} on the threshold between the blow-up and the global existence regions obtained holds true here.
具有局部初始数据的波动方程的一个爆破结果:结合非线性的标度不变阻尼和质量项
本文主要研究具有局部初始数据的阻尼波动方程,在具有质量项和两种组合非线性的\textit{尺度不变情况下}。更准确地说,我们考虑以下等式:$$ (E) {1cm} u_{tt}-\Delta u+\frac{\mu}{1+t}u_t+\frac{\nu^2}{(1+t)^2}u=|u_t|^p+|u|^q, \quad \mbox{in}\ \mathbb{R}^N\times[0,\infty), $$初始数据较小。在质量和阻尼系数分别为$\nu$和$\mu>0$的一些假设下,我们表明,在无质量波动方程的情况下,$(E)$的解的爆炸区域和寿命界与\cite{Our2}中得到的相同,即$(E)$与$\nu=0$。此外,利用对$(E)$所做的部分计算,我们增强了\cite{Palmieri}中关于$(E)$解的Glassey猜想的结果,省略了非线性项$|u|^q$。实际上,爆炸区域从$p \in (1, p_G(N+\sigma)]$延伸到$p \in (1, p_G(N+\mu)]$,其中$\sigma$由下面的(1.12)给出,因此,对$(\mu-1)^2-4\nu^2<1$时的寿命有一个更好的估计。否则,两个结果是一致的。最后,我们可以得出结论,质量{\it项对}$(E)$的动力学没有影响。$(E)$没有非线性项$|u|^q$),并且我们在\cite{Our2}中所做的关于爆炸和得到的整体存在区域之间的阈值的猜想在这里成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信