Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis

T. Kuipers, E. Bekkers
{"title":"Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis","authors":"T. Kuipers, E. Bekkers","doi":"10.48550/arXiv.2306.13960","DOIUrl":null,"url":null,"abstract":"Regular group convolutional neural networks (G-CNNs) have been shown to increase model performance and improve equivariance to different geometrical symmetries. This work addresses the problem of SE(3), i.e., roto-translation equivariance, on volumetric data. Volumetric image data is prevalent in many medical settings. Motivated by the recent work on separable group convolutions, we devise a SE(3) group convolution kernel separated into a continuous SO(3) (rotation) kernel and a spatial kernel. We approximate equivariance to the continuous setting by sampling uniform SO(3) grids. Our continuous SO(3) kernel is parameterized via RBF interpolation on similarly uniform grids. We demonstrate the advantages of our approach in volumetric medical image analysis. Our SE(3) equivariant models consistently outperform CNNs and regular discrete G-CNNs on challenging medical classification tasks and show significantly improved generalization capabilities. Our approach achieves up to a 16.5% gain in accuracy over regular CNNs.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"33 1","pages":"252-261"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.13960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Regular group convolutional neural networks (G-CNNs) have been shown to increase model performance and improve equivariance to different geometrical symmetries. This work addresses the problem of SE(3), i.e., roto-translation equivariance, on volumetric data. Volumetric image data is prevalent in many medical settings. Motivated by the recent work on separable group convolutions, we devise a SE(3) group convolution kernel separated into a continuous SO(3) (rotation) kernel and a spatial kernel. We approximate equivariance to the continuous setting by sampling uniform SO(3) grids. Our continuous SO(3) kernel is parameterized via RBF interpolation on similarly uniform grids. We demonstrate the advantages of our approach in volumetric medical image analysis. Our SE(3) equivariant models consistently outperform CNNs and regular discrete G-CNNs on challenging medical classification tasks and show significantly improved generalization capabilities. Our approach achieves up to a 16.5% gain in accuracy over regular CNNs.
正则SE(3)群卷积用于体积医学图像分析
正则群卷积神经网络(g - cnn)已被证明可以提高模型性能并改善对不同几何对称的等方差。这项工作解决了体积数据上的SE(3)问题,即旋转平移等方差。体积图像数据在许多医疗环境中很普遍。受最近关于可分离群卷积研究的启发,我们设计了一个SE(3)群卷积核,它分为连续SO(3)(旋转)核和空间核。我们通过采样均匀的SO(3)网格来近似连续设置的等方差。我们的连续SO(3)核通过RBF插值在相似的均匀网格上参数化。我们证明了我们的方法在体积医学图像分析中的优势。我们的SE(3)等变模型在具有挑战性的医学分类任务上始终优于cnn和常规离散g - cnn,并显示出显著提高的泛化能力。我们的方法比常规cnn的准确率提高了16.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信