Modeling spatial spillover effect on intersection crash propensity: a case study at the county level in Ohio

IF 2.4 3区 工程技术 Q3 TRANSPORTATION
Wei Lin, Heng Wei, John E. Ash
{"title":"Modeling spatial spillover effect on intersection crash propensity: a case study at the county level in Ohio","authors":"Wei Lin, Heng Wei, John E. Ash","doi":"10.1080/19439962.2022.2129892","DOIUrl":null,"url":null,"abstract":"Abstract The characteristics of intersection crashes are not only affected by the subject intersection where the crash occurs but also are correlated with environmental conditions of neighboring analysis zones. There are few studies on intersection crash analysis to solve certain spatial effects on microscopic safety issues by proactively incorporating highway safety improvement measures into the long-term transportation planning process. The objective of this paper is to develop a heuristic traffic safety analysis system where spatial spillovers analysis is integrated into roadway safety assessment to incorporate micro variables and macro variables. With K-means clustering technique in a GIS environment, 8 hotspot counties are identified from 88 counties in Ohio, which have high intersection crash propensity. The rest of counties are identified as general counties. Then, an innovative integrated Generalized Linear Model is adopted to identify 11 and 20 significant variables that contribute to the intersection crash propensity in hotspot counties and general counties, respectively. To verify compatibility of intersection crash frequency models with macro-level and micro-level measurement, Reading Road in Cincinnati, Hamilton County (hotspot county) and I-71 in Mason City and Lebanon City of Warren County (general county) are used as examples for the test, and the results show a good consistence.","PeriodicalId":46672,"journal":{"name":"Journal of Transportation Safety & Security","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Safety & Security","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19439962.2022.2129892","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The characteristics of intersection crashes are not only affected by the subject intersection where the crash occurs but also are correlated with environmental conditions of neighboring analysis zones. There are few studies on intersection crash analysis to solve certain spatial effects on microscopic safety issues by proactively incorporating highway safety improvement measures into the long-term transportation planning process. The objective of this paper is to develop a heuristic traffic safety analysis system where spatial spillovers analysis is integrated into roadway safety assessment to incorporate micro variables and macro variables. With K-means clustering technique in a GIS environment, 8 hotspot counties are identified from 88 counties in Ohio, which have high intersection crash propensity. The rest of counties are identified as general counties. Then, an innovative integrated Generalized Linear Model is adopted to identify 11 and 20 significant variables that contribute to the intersection crash propensity in hotspot counties and general counties, respectively. To verify compatibility of intersection crash frequency models with macro-level and micro-level measurement, Reading Road in Cincinnati, Hamilton County (hotspot county) and I-71 in Mason City and Lebanon City of Warren County (general county) are used as examples for the test, and the results show a good consistence.
交叉口碰撞倾向性的空间溢出效应建模——以俄亥俄州县域为例
交叉口交通事故的特征不仅受事故发生的主体交叉口的影响,还与邻近分析区的环境条件有关。将公路安全改善措施主动纳入长期交通规划过程,解决微观安全问题的空间效应的交叉口碰撞分析研究较少。本文的目的是建立一个启发式的交通安全分析系统,将空间溢出分析与道路安全评价相结合,将微观变量与宏观变量相结合。利用GIS环境下的k -均值聚类技术,从俄亥俄州88个县中识别出8个路口碰撞倾向性较高的热点县。其余的县称为普通县。然后,采用一种创新的综合广义线性模型,分别识别出热点县和普通县的11个和20个影响路口碰撞倾向的显著变量。为了验证宏观层面和微观层面测量的交叉口碰撞频率模型的兼容性,以辛辛那提的雷丁路、热点县的汉密尔顿县、梅森市的I-71和沃伦县的黎巴嫩市为例进行了测试,结果显示出良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
15.40%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信