Automatic fault tracking across seismic volumes via tracking vectors

Zhen Wang, Z. Long, G. Al-Regib, Asjad Amin, Mohamed Deriche
{"title":"Automatic fault tracking across seismic volumes via tracking vectors","authors":"Zhen Wang, Z. Long, G. Al-Regib, Asjad Amin, Mohamed Deriche","doi":"10.1109/ICIP.2014.7026182","DOIUrl":null,"url":null,"abstract":"The identification of reservoir regions has a close relationship with the detection of faults in seismic volumes. However, only relying on human intervention, most fault detection algorithms are inefficient. In this paper, we present a new technique that automatically tracks faults across a 3D seismic volume. To implement automation, we propose a two-way fault line projection based on estimated tracking vectors. In the tracking process, projected fault lines are integrated into a synthesized line as the tracked fault line, through an optimization process with local geological constraints. The tracking algorithm is evaluated using real-world seismic data sets with promising results. The proposed method provides comparable accuracy to the detection of faults explicitly in every seismic section, and it also reduces computational complexity.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"12 1","pages":"5851-5855"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The identification of reservoir regions has a close relationship with the detection of faults in seismic volumes. However, only relying on human intervention, most fault detection algorithms are inefficient. In this paper, we present a new technique that automatically tracks faults across a 3D seismic volume. To implement automation, we propose a two-way fault line projection based on estimated tracking vectors. In the tracking process, projected fault lines are integrated into a synthesized line as the tracked fault line, through an optimization process with local geological constraints. The tracking algorithm is evaluated using real-world seismic data sets with promising results. The proposed method provides comparable accuracy to the detection of faults explicitly in every seismic section, and it also reduces computational complexity.
基于跟踪向量的地震体断层自动跟踪
储层的识别与地震体断层的检测有着密切的关系。然而,大多数故障检测算法仅依靠人工干预,效率低下。在本文中,我们提出了一种自动跟踪三维地震体断层的新技术。为了实现自动化,我们提出了一种基于估计跟踪向量的双向故障线投影。在跟踪过程中,通过局部地质约束的优化过程,将投影断层线整合成一条综合断层线作为跟踪断层线。利用实际地震数据集对跟踪算法进行了评估,结果令人满意。该方法不仅具有相当的精度,而且降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信