{"title":"A Novel UML Based Approach for Early Detection of Change Prone Classes","authors":"Deepa Bura, A. Choudhary, R. K. Singh","doi":"10.4018/IJOSSP.2017070101","DOIUrl":null,"url":null,"abstract":"This article describes how predicting change-prone classes is essential for effective development of software. Evaluating changes from one release of software to the next can enhance software quality. This article proposes an efficient novel-based approach for predicting changes early in the object-oriented software. Earlier researchers have calculated change prone classes using static characteristics such as source line of code e.g. added, deleted and modified. This research work proposes to use dynamic metrics such as execution duration, run time information, regularity, class dependency and popularity for predicting change prone classes. Execution duration and run time information are evaluated directly from the software. Class dependency is obtained from UML2.0 class and sequence diagrams. Regularity and popularity is acquired from frequent item set mining algorithms and an ABC algorithm. For classifying the class as change-prone or non-change-prone class an Interactive Dichotomizer version 3 ID3 algorithm is used. Further validation of the results is done using two open source software, OpenClinic and OpenHospital.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"22 1","pages":"1-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2017070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4
Abstract
This article describes how predicting change-prone classes is essential for effective development of software. Evaluating changes from one release of software to the next can enhance software quality. This article proposes an efficient novel-based approach for predicting changes early in the object-oriented software. Earlier researchers have calculated change prone classes using static characteristics such as source line of code e.g. added, deleted and modified. This research work proposes to use dynamic metrics such as execution duration, run time information, regularity, class dependency and popularity for predicting change prone classes. Execution duration and run time information are evaluated directly from the software. Class dependency is obtained from UML2.0 class and sequence diagrams. Regularity and popularity is acquired from frequent item set mining algorithms and an ABC algorithm. For classifying the class as change-prone or non-change-prone class an Interactive Dichotomizer version 3 ID3 algorithm is used. Further validation of the results is done using two open source software, OpenClinic and OpenHospital.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.