Back-Propagation Neural Network for Traffic Incident Detection Based on Fusion of Loop Detector and Probe Vehicle Data

Liu Yu, Lei Yu, Jianquan Wang, Y. Qi, H. Wen
{"title":"Back-Propagation Neural Network for Traffic Incident Detection Based on Fusion of Loop Detector and Probe Vehicle Data","authors":"Liu Yu, Lei Yu, Jianquan Wang, Y. Qi, H. Wen","doi":"10.1109/ICNC.2008.54","DOIUrl":null,"url":null,"abstract":"Traffic incident detection based on a fusion of various available data sources has been an evolving research topic in ITS. This paper proposes a data fusion model for traffic incident detection using BP neural network. In this model, the cumulative sum (CUSUM) approach is used to develop incident detection algorithms using loop detector data and probe vehicle data respectively, while the BP neural network combines the outputs from both incident detection algorithms. The proposed algorithm is tested and evaluated with the data generated by the simulation model INTEGRATION. The result shows that the outputs using BP neural network improves the accuracy provided by each single source incident detection algorithm.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"32 1","pages":"116-120"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Traffic incident detection based on a fusion of various available data sources has been an evolving research topic in ITS. This paper proposes a data fusion model for traffic incident detection using BP neural network. In this model, the cumulative sum (CUSUM) approach is used to develop incident detection algorithms using loop detector data and probe vehicle data respectively, while the BP neural network combines the outputs from both incident detection algorithms. The proposed algorithm is tested and evaluated with the data generated by the simulation model INTEGRATION. The result shows that the outputs using BP neural network improves the accuracy provided by each single source incident detection algorithm.
基于环路检测器和探测车辆数据融合的反向传播神经网络交通事件检测
基于各种可用数据源融合的交通事件检测已成为智能交通系统中一个不断发展的研究课题。提出了一种基于BP神经网络的交通事件检测数据融合模型。在该模型中,使用累积和(CUSUM)方法分别使用环路检测器数据和探测车辆数据开发事件检测算法,而BP神经网络将两种事件检测算法的输出结合起来。利用仿真模型INTEGRATION生成的数据对该算法进行了测试和评价。结果表明,使用BP神经网络输出的结果提高了单源事件检测算法提供的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信