Unsupervised mode detection in cyber-physical systems using variable order Markov models

Barış Gün Sürmeli, Feyza Eksen, Bilal Dinc, P. Schüller, M. Tümer
{"title":"Unsupervised mode detection in cyber-physical systems using variable order Markov models","authors":"Barış Gün Sürmeli, Feyza Eksen, Bilal Dinc, P. Schüller, M. Tümer","doi":"10.1109/INDIN.2017.8104881","DOIUrl":null,"url":null,"abstract":"Sequential data generated from various sources in a multi-mode industrial production system provides valuable information on the current mode of the system and enables one to build a model for each individual operating mode. Using these models in a multi-mode system, one may distinguish modes of the system and, furthermore, detect whether the current mode is a (normal or faulty) mode known from historical data, or a new mode. In this work, we model each individual mode by a probabilistic suffix tree (PST) used to implement variable order Markov models (VOMMs) and propose a novel unsupervised PST matching algorithm that compares the tree models by a matching cost once they are constructed. The matching cost we define comprises of a subsequence dissimilarity cost and a probability cost. Our tree matching method enables to compare two PSTs in linear time by one concurrent top-down pass. We use this matching cost as a similarity measure for k-medoid clustering and cluster PSTs obtained from system modes according to their matching costs. The overall approach yields promising results for unsupervised identification of modes on data obtained from of a physical factory demonstrator. Notably we can distinguish modes on two levels of granularity, both corresponding to human expert labels, with a RAND score of up to 73 % compared to a baseline of at most 42 %.","PeriodicalId":6595,"journal":{"name":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","volume":"42 1","pages":"841-846"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2017.8104881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Sequential data generated from various sources in a multi-mode industrial production system provides valuable information on the current mode of the system and enables one to build a model for each individual operating mode. Using these models in a multi-mode system, one may distinguish modes of the system and, furthermore, detect whether the current mode is a (normal or faulty) mode known from historical data, or a new mode. In this work, we model each individual mode by a probabilistic suffix tree (PST) used to implement variable order Markov models (VOMMs) and propose a novel unsupervised PST matching algorithm that compares the tree models by a matching cost once they are constructed. The matching cost we define comprises of a subsequence dissimilarity cost and a probability cost. Our tree matching method enables to compare two PSTs in linear time by one concurrent top-down pass. We use this matching cost as a similarity measure for k-medoid clustering and cluster PSTs obtained from system modes according to their matching costs. The overall approach yields promising results for unsupervised identification of modes on data obtained from of a physical factory demonstrator. Notably we can distinguish modes on two levels of granularity, both corresponding to human expert labels, with a RAND score of up to 73 % compared to a baseline of at most 42 %.
基于变阶马尔可夫模型的网络物理系统无监督模式检测
在多模式工业生产系统中,从各种来源产生的顺序数据提供了有关系统当前模式的有价值的信息,并使人们能够为每种单独的操作模式建立模型。在多模式系统中使用这些模型,可以区分系统的模式,并且进一步检测当前模式是从历史数据中已知的(正常或故障)模式还是新模式。在这项工作中,我们通过一个用于实现变阶马尔可夫模型(vomm)的概率后缀树(PST)来建模每个单独的模式,并提出了一种新的无监督PST匹配算法,该算法在树模型构建后通过匹配成本来比较树模型。我们定义的匹配代价包括子序列不相似代价和概率代价。我们的树匹配方法能够在线性时间内通过一个并发的自上而下的传递来比较两个pst。我们使用这个匹配代价作为k- medium聚类和根据匹配代价从系统模式中获得的聚类pst的相似性度量。总体方法对从物理工厂演示器获得的数据进行无监督模式识别产生了有希望的结果。值得注意的是,我们可以在两个粒度级别上区分模式,两者都对应于人类专家标签,RAND得分高达73%,而基线最多为42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信