{"title":"Applied Voltage Effect in Lbl Sensors While Detecting 17α-Ethinylestradiol in Water Samples","authors":"Paulo M. Zagalo, C. Magro, P. Ribeiro, M. Raposo","doi":"10.3390/csac2021-10460","DOIUrl":null,"url":null,"abstract":"The effect of the applied voltage on impedance spectra, measured on sensors based on solid supports with interdigitated electrodes (IDE) that are either covered or not with a layer-by-layer film prepared with polyethylenimine and poly (sodium 4-styrenesulfonate), was analyzed to detect 17α-ethinylestradiol(EE2) in mineral water and tap water. The results show that the sensor response is strongly affected by the applied voltage, the presence of film, and the water matrix, meaning that electrochemical reactions develop near the IDE. However, for low values of applied voltage, the sensor response is reproducible with negligible electrochemical reactions, allowing us to conclude that 25 mV is the appropriate voltage.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of the applied voltage on impedance spectra, measured on sensors based on solid supports with interdigitated electrodes (IDE) that are either covered or not with a layer-by-layer film prepared with polyethylenimine and poly (sodium 4-styrenesulfonate), was analyzed to detect 17α-ethinylestradiol(EE2) in mineral water and tap water. The results show that the sensor response is strongly affected by the applied voltage, the presence of film, and the water matrix, meaning that electrochemical reactions develop near the IDE. However, for low values of applied voltage, the sensor response is reproducible with negligible electrochemical reactions, allowing us to conclude that 25 mV is the appropriate voltage.