DETERMINATION OF SUSTAINABLE LEVELS OF DESIGN ALTERNATIVES SELECTION IN THE WORKFLOW CAP SYSTEM

S. Mitin, P. Bochkarev, V. Shalunov, I. A. Razmanov
{"title":"DETERMINATION OF SUSTAINABLE LEVELS OF DESIGN ALTERNATIVES SELECTION IN THE WORKFLOW CAP SYSTEM","authors":"S. Mitin, P. Bochkarev, V. Shalunov, I. A. Razmanov","doi":"10.18323/2073-5073-2021-3-48-56","DOIUrl":null,"url":null,"abstract":"The development of the mechanical treatment workflow CAP system is aimed at the solution of a crucial task of reduction of terms and the improvement of quality of multiproduct machining manufactures work preparation, as the existing workflow CAP systems have not got the possibility of fast response to changes in a production situation often arising within the multiproduct manufacture. The authors of this paper developed the workflow CAP system, which contains the requirements of the design activity full automation, design solution multivariance, and the feedback with the engineering process implementation subsystem. The paper deals with the development of a mathematical model and the technique of searching for sustainable levels of selecting design alternatives depending on the production situation for the whole design procedures of the workflow CAP system. The authors prove the application of a mathematical tool of genetic algorithms; describe the mathematical model using its terms. As a gene, the level of selection in a separate project procedure is specified. A chromosome is a set of genes according to the project procedures. The objective function determines the minimum total time of processing of the specified nomenclature of parts based on the ranges of gene aggregates resulting from crossing and mutation operations. The result of the work is the mathematical model and the technique for identifying the sustainable levels of selection in each project procedure ensuring the possibility of self-adjustment of the workflow CAP system depending on the production situation.","PeriodicalId":23555,"journal":{"name":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2073-5073-2021-3-48-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of the mechanical treatment workflow CAP system is aimed at the solution of a crucial task of reduction of terms and the improvement of quality of multiproduct machining manufactures work preparation, as the existing workflow CAP systems have not got the possibility of fast response to changes in a production situation often arising within the multiproduct manufacture. The authors of this paper developed the workflow CAP system, which contains the requirements of the design activity full automation, design solution multivariance, and the feedback with the engineering process implementation subsystem. The paper deals with the development of a mathematical model and the technique of searching for sustainable levels of selecting design alternatives depending on the production situation for the whole design procedures of the workflow CAP system. The authors prove the application of a mathematical tool of genetic algorithms; describe the mathematical model using its terms. As a gene, the level of selection in a separate project procedure is specified. A chromosome is a set of genes according to the project procedures. The objective function determines the minimum total time of processing of the specified nomenclature of parts based on the ranges of gene aggregates resulting from crossing and mutation operations. The result of the work is the mathematical model and the technique for identifying the sustainable levels of selection in each project procedure ensuring the possibility of self-adjustment of the workflow CAP system depending on the production situation.
工作流上限系统中设计方案选择的可持续水平的确定
针对多产品加工制造中经常出现的生产情况变化,现有的工艺流程CAP系统无法快速响应,因此开发机械加工流程CAP系统是为了解决多产品加工制造企业工作准备中缩短条件和提高质量的关键任务。本文开发了包含设计活动全自动化、设计方案多方差、与工程过程实现子系统反馈等需求的工作流CAP系统。本文讨论了工作流CAP系统的整个设计过程的数学模型的建立和根据生产情况寻找可持续的设计方案选择水平的技术。作者证明了遗传算法的数学工具的应用;用数学模型的术语描述它。作为一个基因,在一个单独的项目程序中的选择水平是指定的。根据项目程序,染色体是一组基因。目标函数根据由杂交和突变操作产生的基因聚集体的范围确定处理特定命名部分的最小总时间。工作的结果是数学模型和技术,用于确定每个项目过程中的可持续选择水平,确保工作流CAP系统根据生产情况进行自我调整的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信