IMPLEMENTATION OF RFM ANALYSIS USING SUPPORT VECTOR MACHINE MODEL

Q3 Medicine
Ananthi Sheshasaayee, L. Logeshwari
{"title":"IMPLEMENTATION OF RFM ANALYSIS USING SUPPORT VECTOR MACHINE MODEL","authors":"Ananthi Sheshasaayee, L. Logeshwari","doi":"10.1109/I-SMAC.2018.8653758","DOIUrl":null,"url":null,"abstract":"In the modern business customer response is one of the vital characteristics of services. The customer relationship management accurately predict the invaluable customer. Because attention is needed to rate low response rating customers. Most of the direct marketing sectors randomly select and reduce degree of the influencing problem. But online marketing sectors face more difficulties to identify customer responses. This paper proposes SVM model based on the RFM values and also according to the monetary value to predict recency and frequency weights.","PeriodicalId":53631,"journal":{"name":"Koomesh","volume":"11 1","pages":"760-763"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koomesh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC.2018.8653758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In the modern business customer response is one of the vital characteristics of services. The customer relationship management accurately predict the invaluable customer. Because attention is needed to rate low response rating customers. Most of the direct marketing sectors randomly select and reduce degree of the influencing problem. But online marketing sectors face more difficulties to identify customer responses. This paper proposes SVM model based on the RFM values and also according to the monetary value to predict recency and frequency weights.
使用支持向量机模型实现RFM分析
在现代商业中,客户响应是服务的重要特征之一。客户关系管理准确地预测了宝贵的客户。因为需要注意评价低反应等级的客户。直销部门大多是随机选择,降低影响程度的问题。但在线营销部门在识别客户反应方面面临更多困难。本文提出了基于RFM值的支持向量机模型,并根据货币值来预测最近权和频率权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Koomesh
Koomesh Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信