Kernel Methods in Computer Vision

IF 3.8 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Christoph H. Lampert
{"title":"Kernel Methods in Computer Vision","authors":"Christoph H. Lampert","doi":"10.1561/0600000027","DOIUrl":null,"url":null,"abstract":"Over the last years, kernel methods have established themselves as powerful tools for computer vision researchers as well as for practitioners. In this tutorial, we give an introduction to kernel methods in computer vision from a geometric perspective, introducing not only the ubiquitous support vector machines, but also less known techniques for regression, dimensionality reduction, outlier detection, and clustering. Additionally, we give an outlook on very recent, non-classical techniques for the prediction of structure data, for the estimation of statistical dependency, and for learning the kernel function itself. All methods are illustrated with examples of successful application from the recent computer vision research literature.","PeriodicalId":45662,"journal":{"name":"Foundations and Trends in Computer Graphics and Vision","volume":"78 1","pages":"193-285"},"PeriodicalIF":3.8000,"publicationDate":"2009-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Computer Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0600000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 102

Abstract

Over the last years, kernel methods have established themselves as powerful tools for computer vision researchers as well as for practitioners. In this tutorial, we give an introduction to kernel methods in computer vision from a geometric perspective, introducing not only the ubiquitous support vector machines, but also less known techniques for regression, dimensionality reduction, outlier detection, and clustering. Additionally, we give an outlook on very recent, non-classical techniques for the prediction of structure data, for the estimation of statistical dependency, and for learning the kernel function itself. All methods are illustrated with examples of successful application from the recent computer vision research literature.
计算机视觉中的核方法
在过去的几年里,核方法已经成为计算机视觉研究人员和实践者的强大工具。在本教程中,我们从几何角度介绍了计算机视觉中的核方法,不仅介绍了无处不在的支持向量机,还介绍了鲜为人知的回归、降维、离群点检测和聚类技术。此外,我们对最近的非经典技术进行了展望,这些技术用于预测结构数据,估计统计依赖性,以及学习核函数本身。所有方法都用最近计算机视觉研究文献中的成功应用实例加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations and Trends in Computer Graphics and Vision
Foundations and Trends in Computer Graphics and Vision COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
31.20
自引率
0.00%
发文量
1
期刊介绍: The growth in all aspects of research in the last decade has led to a multitude of new publications and an exponential increase in published research. Finding a way through the excellent existing literature and keeping up to date has become a major time-consuming problem. Electronic publishing has given researchers instant access to more articles than ever before. But which articles are the essential ones that should be read to understand and keep abreast with developments of any topic? To address this problem Foundations and Trends® in Computer Graphics and Vision publishes high-quality survey and tutorial monographs of the field. Each issue of Foundations and Trends® in Computer Graphics and Vision comprises a 50-100 page monograph written by research leaders in the field. Monographs that give tutorial coverage of subjects, research retrospectives as well as survey papers that offer state-of-the-art reviews fall within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信