A monodromy criterion for the good reduction of $K3$ surfaces

Genaro Hernandez-Mada
{"title":"A monodromy criterion for the good reduction of $K3$ surfaces","authors":"Genaro Hernandez-Mada","doi":"10.4171/rsmup/50","DOIUrl":null,"url":null,"abstract":"We give a criterion for the good reduction of semistable K3 surfaces over p-adic fields. We use neither p-adic Hodge theory nor transcendental methods as in the analogous proofs of criteria for good reduction of curves or K3 surfaces. We achieve our goal by realizing the special fiber Xs of a semistable model X of a K3 surface over the p-adic field K, as a special fiber of a log-family in characteristic p and use an arithmetic version of the Clemens-Schmid exact sequence in order to obtain a Kulikov-Persson-Pinkham classification theorem in characteristic p. Mathematics Subject Classification (2010). 14F30, 11G25, 14F35","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We give a criterion for the good reduction of semistable K3 surfaces over p-adic fields. We use neither p-adic Hodge theory nor transcendental methods as in the analogous proofs of criteria for good reduction of curves or K3 surfaces. We achieve our goal by realizing the special fiber Xs of a semistable model X of a K3 surface over the p-adic field K, as a special fiber of a log-family in characteristic p and use an arithmetic version of the Clemens-Schmid exact sequence in order to obtain a Kulikov-Persson-Pinkham classification theorem in characteristic p. Mathematics Subject Classification (2010). 14F30, 11G25, 14F35
K3曲面良好约化的单一性判据
给出了在p进域上半稳定K3曲面的良好约化的判据。我们既不使用p进Hodge理论,也不使用超越方法,就像在曲线或K3曲面的良好约化准则的类似证明中那样。我们通过在p进域K上实现K3曲面的半稳定模型X的特殊光纤X,作为特征p上的对数族的特殊光纤,并使用Clemens-Schmid精确序列的算术版本来获得特征p上的Kulikov-Persson-Pinkham分类定理,从而实现了我们的目标。数学主题分类(2010)。14f30, 11g25, 14f35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信