The Role of Social Media in Financial Risk Prediction: Evidence from China*

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE
Qi Wang, Chenghu Zhang, Zheng Li
{"title":"The Role of Social Media in Financial Risk Prediction: Evidence from China*","authors":"Qi Wang,&nbsp;Chenghu Zhang,&nbsp;Zheng Li","doi":"10.1111/ajfs.12392","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop an intelligent approach to detect default risk of FinTech lending platforms. Using China's peer-to-peer (P2P) lending market as an empirical application, we assemble a unique dataset of matched default and non-default platforms. We apply state-of-art techniques to extract sentiment and topic features from several stakeholders' social media data, which are used as supportive soft information. Our approach exhibits better predictive abilities than those with hard information only, where the value of dynamic soft information is demonstrated. Our approach serves as a proof of concept to complement traditional methods of financial risk prediction.</p>","PeriodicalId":8570,"journal":{"name":"Asia-Pacific Journal of Financial Studies","volume":"51 4","pages":"618-650"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Financial Studies","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ajfs.12392","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop an intelligent approach to detect default risk of FinTech lending platforms. Using China's peer-to-peer (P2P) lending market as an empirical application, we assemble a unique dataset of matched default and non-default platforms. We apply state-of-art techniques to extract sentiment and topic features from several stakeholders' social media data, which are used as supportive soft information. Our approach exhibits better predictive abilities than those with hard information only, where the value of dynamic soft information is demonstrated. Our approach serves as a proof of concept to complement traditional methods of financial risk prediction.

社交媒体在金融风险预测中的作用:来自中国的证据*
本文提出了一种智能检测金融科技借贷平台违约风险的方法。以中国的P2P借贷市场为实证应用,我们收集了一个独特的匹配违约和非违约平台数据集。我们应用最先进的技术从几个利益相关者的社交媒体数据中提取情感和主题特征,这些特征用作支持性软信息。我们的方法比那些只有硬信息的方法表现出更好的预测能力,其中动态软信息的价值得到了证明。我们的方法作为一个概念的证明,补充了传统的金融风险预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
20.00%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信