Models Where the Least Trimmed Squares and Least Median of Squares Estimators Are Maximum Likelihood

Vanessa Berenguer-Rico, S. Johansen, B. Nielsen
{"title":"Models Where the Least Trimmed Squares and Least Median of Squares Estimators Are Maximum Likelihood","authors":"Vanessa Berenguer-Rico, S. Johansen, B. Nielsen","doi":"10.2139/ssrn.3455870","DOIUrl":null,"url":null,"abstract":"The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to fi?nd, for a given h; a sub-sample of h '?good' ?observations among n observations and estimate the regression on that sub-sample. We fi?nd models, based on the normal or the uniform distribution respectively, in which these estimators are maximum likelihood. We provide an asymptotic theory for the location-scale case in those models. The LTS estimator is found to be h1/2 consistent and asymptotically standard normal. The LMS estimator is found to be h consistent and asymptotically Laplace.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3455870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to fi?nd, for a given h; a sub-sample of h '?good' ?observations among n observations and estimate the regression on that sub-sample. We fi?nd models, based on the normal or the uniform distribution respectively, in which these estimators are maximum likelihood. We provide an asymptotic theory for the location-scale case in those models. The LTS estimator is found to be h1/2 consistent and asymptotically standard normal. The LMS estimator is found to be h consistent and asymptotically Laplace.
最小裁剪二乘和最小二乘中值估计量为极大似然的模型
最小裁剪二乘(LTS)和最小二乘中值(LMS)估计是常用的鲁棒回归估计。估算器背后的想法是……Nd,对于给定h;h '?的子样本n个观测值中的好观测值,并估计该子样本的回归。我们fi吗?Nd模型,分别基于正态分布或均匀分布,其中这些估计量是最大似然。我们为这些模型中的位置尺度情况提供了一个渐近理论。发现LTS估计量是h1/2一致且渐近标准正态。发现LMS估计量是h一致且渐近拉普拉斯的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信