$L^p$ estimates for wave equations with specific $C^{0,1}$ coefficients

D. Frey, Pierre Portal
{"title":"$L^p$ estimates for wave equations with specific $C^{0,1}$ coefficients","authors":"D. Frey, Pierre Portal","doi":"10.5445/IR/1000124653","DOIUrl":null,"url":null,"abstract":"Peral/Miyachi’s celebrated theorem on fixed time $L^p$ estimates with loss of derivatives for the wave equation states that the operator $(I-\\Delta)^{-\\frac{\\alpha}{2}}\\exp(i\\sqrt{-\\Delta})$ is bounded on $L^p(\\mathbb{R}^d)$ if and only if $\\alpha\\ge s_p:=(d-1)\\left|\\frac{1}{p}-\\frac{1}{2}\\right|$. We extend this result tooperators of the form $L=−\\displaystyle\\sum_{j=1}^d a_j\\partial_j a_j\\partial_j$, for functions $x\\mapsto a_i(x_i)$ that are bounded above and below, but merely Lipschitz continuous. This is below the $C^{1,1}$ regularity that is known to be necessary in general for Strichartz estimates in dimension $d\\ge2$. Our proof is based on an approach to the boundedness of Fourier integral operators recently developed by Hassell, Rozendaal, and the second author. We construct a scale of adapted Hardy spaces on which $\\exp(i\\sqrt{L})$ is bounded by lifting $L^p$ functions to the tent space $T^{p,2}(\\mathbb{R}^d)$, using a wave packet transform adapted to the Lipschitz metric induced by $A$. The result then follows from Sobolev embedding properties of these spaces.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000124653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Peral/Miyachi’s celebrated theorem on fixed time $L^p$ estimates with loss of derivatives for the wave equation states that the operator $(I-\Delta)^{-\frac{\alpha}{2}}\exp(i\sqrt{-\Delta})$ is bounded on $L^p(\mathbb{R}^d)$ if and only if $\alpha\ge s_p:=(d-1)\left|\frac{1}{p}-\frac{1}{2}\right|$. We extend this result tooperators of the form $L=−\displaystyle\sum_{j=1}^d a_j\partial_j a_j\partial_j$, for functions $x\mapsto a_i(x_i)$ that are bounded above and below, but merely Lipschitz continuous. This is below the $C^{1,1}$ regularity that is known to be necessary in general for Strichartz estimates in dimension $d\ge2$. Our proof is based on an approach to the boundedness of Fourier integral operators recently developed by Hassell, Rozendaal, and the second author. We construct a scale of adapted Hardy spaces on which $\exp(i\sqrt{L})$ is bounded by lifting $L^p$ functions to the tent space $T^{p,2}(\mathbb{R}^d)$, using a wave packet transform adapted to the Lipschitz metric induced by $A$. The result then follows from Sobolev embedding properties of these spaces.
具有特定系数$C^{0,1}$的波动方程的$L^p$估计
Peral/Miyachi关于波动方程导数损失的固定时间$L^p$估计的著名定理表明,当且仅当$\alpha\ge s_p:=(d-1)\left|\frac{1}{p}-\frac{1}{2}\right|$时,算子$(I-\Delta)^{-\frac{\alpha}{2}}\exp(i\sqrt{-\Delta})$在$L^p(\mathbb{R}^d)$上有界。我们将这个结果推广到$L=−\displaystyle\sum_{j=1}^d a_j\partial_j a_j\partial_j$形式的算子,对于上下有界但仅仅是Lipschitz连续的函数$x\mapsto a_i(x_i)$。这低于$C^{1,1}$规则,这是已知的对于维度$d\ge2$的Strichartz估计通常所必需的。我们的证明是基于最近由Hassell, Rozendaal和第二作者开发的傅里叶积分算子的有界性方法。我们构造了一个适应Hardy空间的尺度,在这个尺度上$\exp(i\sqrt{L})$是通过将$L^p$函数提升到帐篷空间$T^{p,2}(\mathbb{R}^d)$来限定的,使用了一个适应于由$A$引起的Lipschitz度量的波包变换。然后根据这些空间的Sobolev嵌入性质得到结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信