Geometric quantization of $b$-symplectic manifolds

Pub Date : 2021-01-01 DOI:10.4310/JSG.2021.V19.N1.A1
M. Braverman, Yiannis Loizides, Yanli Song
{"title":"Geometric quantization of $b$-symplectic manifolds","authors":"M. Braverman, Yiannis Loizides, Yanli Song","doi":"10.4310/JSG.2021.V19.N1.A1","DOIUrl":null,"url":null,"abstract":"We introduce a method of geometric quantization for compact $b$-symplectic manifolds in terms of the index of an Atiyah-Patodi-Singer (APS) boundary value problem. We show further that b-symplectic manifolds have canonical Spin-c structures in the usual sense, and that the APS index above coincides with the index of the Spin-c Dirac operator. We show that if the manifold is endowed with a Hamiltonian action of a compact connected Lie group with non-zero modular weights, then this method satisfies the Guillemin-Sternberg ``quantization commutes with reduction'' property. In particular our quantization coincides with the formal quantization defined by Guillemin, Miranda and Weitsman, providing a positive answer to a question posed in their paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.V19.N1.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We introduce a method of geometric quantization for compact $b$-symplectic manifolds in terms of the index of an Atiyah-Patodi-Singer (APS) boundary value problem. We show further that b-symplectic manifolds have canonical Spin-c structures in the usual sense, and that the APS index above coincides with the index of the Spin-c Dirac operator. We show that if the manifold is endowed with a Hamiltonian action of a compact connected Lie group with non-zero modular weights, then this method satisfies the Guillemin-Sternberg ``quantization commutes with reduction'' property. In particular our quantization coincides with the formal quantization defined by Guillemin, Miranda and Weitsman, providing a positive answer to a question posed in their paper.
分享
查看原文
b -辛流形的几何量化
利用Atiyah-Patodi-Singer (APS)边值问题的指标,给出了紧$b$-辛流形的几何量化方法。我们进一步证明了b-辛流形具有通常意义上的正则自旋-c结构,并且上述APS指标与自旋-c狄拉克算子的指标重合。证明了如果流形具有模权非零的紧连通李群的哈密顿作用,则该方法满足Guillemin-Sternberg“量化交换约化”性质。特别是我们的量子化与Guillemin, Miranda和Weitsman定义的形式量子化一致,为他们论文中提出的问题提供了一个肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信