{"title":"A multiple chain Monte Carlo method for atomistic simulation of high molecular weight polymer melts","authors":"A. Uhlherr","doi":"10.1016/S1089-3156(99)00030-6","DOIUrl":null,"url":null,"abstract":"<div><p>A new Monte Carlo method<span> is proposed for the simulation of bulk systems of atomistically detailed polymers. Each move consists of a configurational rearrangement of the atoms in a specified region of the material, rather than a specified molecule. Thus atoms within different chains may be displaced cooperatively in each Monte Carlo move. Here, the method is implemented for the case of melts of linear chains, where the bond lengths and bond angles<span> are held constant during the move. The performance of the algorithm is examined for linear polyethylene systems with chain lengths of 100 and 1000 backbone atoms, under a range of conditions. The method shows a considerable potential as a very general and flexible tool for simulating realistic polymer materials, subject to a number of performances limiting factors which are described in detail.</span></span></p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"10 1","pages":"Pages 29-41"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00030-6","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089315699000306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A new Monte Carlo method is proposed for the simulation of bulk systems of atomistically detailed polymers. Each move consists of a configurational rearrangement of the atoms in a specified region of the material, rather than a specified molecule. Thus atoms within different chains may be displaced cooperatively in each Monte Carlo move. Here, the method is implemented for the case of melts of linear chains, where the bond lengths and bond angles are held constant during the move. The performance of the algorithm is examined for linear polyethylene systems with chain lengths of 100 and 1000 backbone atoms, under a range of conditions. The method shows a considerable potential as a very general and flexible tool for simulating realistic polymer materials, subject to a number of performances limiting factors which are described in detail.