Linking 13C‐based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
J. Randerson, M. V. Thompson, C. Field
{"title":"Linking 13C‐based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth","authors":"J. Randerson, M. V. Thompson, C. Field","doi":"10.3402/TELLUSB.V51I3.16457","DOIUrl":null,"url":null,"abstract":"The residence times of carbon in plants, litter, and soils are required for partitioning land and ocean sinks using measurements of atmospheric δ 13 C and also for estimating terrestrial carbon storage in response to net primary production (NPP) stimulation by elevated levels of atmospheric CO 2 . While  13 C-based calculations of the land sink decline with increasing estimates of terrestrial carbon residence times (through the fossil fuel-induced isotopic disequilibrium term in equations describing the global atmospheric budgets of  13 CO 2 and CO 2 ), estimates of land sinks based on CO 2 fertilization of plant growth are directly proportional to carbon residence times. Here we used a single model of terrestrial carbon turnover, the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, to simultaneously estimate 1984–1990 terrestrial carbon storage using both approaches. Our goal was to identify the fraction of the  13 CO 2 -based land sink attributable to CO 2 fertilization. Uptake from CO 2 fertilization was calculated using a  β factor of 0.46 to describe the response of NPP to increasing concentrations of atmospheric CO 2 from 1765 to 1990. Given commonly used parameters in the  13 C-based sink calculation and assuming a deforestation flux of 0.8 Pg C/y, CO 2 fertilization accounts for 54% of the missing terrestrial carbon sink from 1984 to 1990. CO 2 fertilization can account for all of the missing terrestrial sink only when the terrestrial mean residence time (MRT) and the land isodisequilibrium forcing are greater than many recent estimates. DOI: 10.1034/j.1600-0889.1999.t01-2-00007.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"11 1","pages":"668-678"},"PeriodicalIF":2.3000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I3.16457","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 21

Abstract

The residence times of carbon in plants, litter, and soils are required for partitioning land and ocean sinks using measurements of atmospheric δ 13 C and also for estimating terrestrial carbon storage in response to net primary production (NPP) stimulation by elevated levels of atmospheric CO 2 . While  13 C-based calculations of the land sink decline with increasing estimates of terrestrial carbon residence times (through the fossil fuel-induced isotopic disequilibrium term in equations describing the global atmospheric budgets of  13 CO 2 and CO 2 ), estimates of land sinks based on CO 2 fertilization of plant growth are directly proportional to carbon residence times. Here we used a single model of terrestrial carbon turnover, the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, to simultaneously estimate 1984–1990 terrestrial carbon storage using both approaches. Our goal was to identify the fraction of the  13 CO 2 -based land sink attributable to CO 2 fertilization. Uptake from CO 2 fertilization was calculated using a  β factor of 0.46 to describe the response of NPP to increasing concentrations of atmospheric CO 2 from 1765 to 1990. Given commonly used parameters in the  13 C-based sink calculation and assuming a deforestation flux of 0.8 Pg C/y, CO 2 fertilization accounts for 54% of the missing terrestrial carbon sink from 1984 to 1990. CO 2 fertilization can account for all of the missing terrestrial sink only when the terrestrial mean residence time (MRT) and the land isodisequilibrium forcing are greater than many recent estimates. DOI: 10.1034/j.1600-0889.1999.t01-2-00007.x
将基于13C的陆地和海洋汇估计值与植物生长的二氧化碳施肥对碳储存的预测联系起来
碳在植物、凋落物和土壤中的停留时间是利用大气δ 13c测量来划分陆地和海洋汇的必要条件,也是估算大气CO 2水平升高对净初级生产(NPP)刺激的陆地碳储量的必要条件。基于13c的陆地汇的计算随着陆地碳停留时间的增加而下降(通过描述全球大气中13co 2和CO 2收支的方程式中化石燃料引起的同位素不平衡项),而基于植物生长的CO 2施肥的陆地汇估算与碳停留时间成正比。在这里,我们使用了一个单一的陆地碳周转模型,即卡内基-艾姆斯-斯坦福方法(CASA)生物地球化学模型,同时使用两种方法估算了1984-1990年的陆地碳储量。我们的目标是确定可归因于CO 2施肥的基于CO 2的土地汇的比例。利用0.46的β因子计算了1765 - 1990年间NPP对大气co2浓度增加的响应。考虑到以13c为基础的碳汇计算中常用的参数,并假设森林砍伐通量为0.8 Pg C/y,在1984 - 1990年期间,co2施肥占陆地碳汇损失的54%。只有当陆地平均停留时间(MRT)和陆地等不平衡强迫大于许多最近的估计时,co2施肥才能解释所有丢失的陆地汇。DOI: 10.1034 / j.1600 0889.1999.t01 - 2 - 00007. x
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
3
期刊介绍: Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信