Witt–Burnside functor attached to $\boldsymbol{Z}_{p}^{2}$ and $p$-adic Lipschitz continuous functions

IF 0.3 4区 数学 Q4 MATHEMATICS
L. Miller, B. Steinhurst
{"title":"Witt–Burnside functor attached to $\\boldsymbol{Z}_{p}^{2}$ and $p$-adic Lipschitz continuous functions","authors":"L. Miller, B. Steinhurst","doi":"10.1216/jca.2020.12.263","DOIUrl":null,"url":null,"abstract":"Dress and Siebeneicher gave a significant generalization of the construction of Witt vectors, by producing for any profinite group G , a ring-valued functor W G . This paper gives the first concrete interpretation of any Witt–Burnside rings outside the procyclic cases in terms of known rings. In particular, the rings W Z p 2 ( k ) , where k is a field of characteristic p > 0 have a quotient realized as rings of Lipschitz continuous functions on the p -adic upper half plane P 1 ( Q p ) . As a consequence we show that the Krull dimensions of the rings W Z p d ( k ) are infinite for d ≥ 2 and we show the Teichmuller representatives form an analogue of the van der Put basis for continuous functions on Z p .","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"47 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2020.12.263","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dress and Siebeneicher gave a significant generalization of the construction of Witt vectors, by producing for any profinite group G , a ring-valued functor W G . This paper gives the first concrete interpretation of any Witt–Burnside rings outside the procyclic cases in terms of known rings. In particular, the rings W Z p 2 ( k ) , where k is a field of characteristic p > 0 have a quotient realized as rings of Lipschitz continuous functions on the p -adic upper half plane P 1 ( Q p ) . As a consequence we show that the Krull dimensions of the rings W Z p d ( k ) are infinite for d ≥ 2 and we show the Teichmuller representatives form an analogue of the van der Put basis for continuous functions on Z p .
附于$\boldsymbol{Z}_{p}^{2}$和$p$-adic Lipschitz连续函数的Witt-Burnside函子
Dress和Siebeneicher给出了Witt向量构造的一个有意义的推广,他们对任意无限群G产生了一个环值函子wg。本文首次用已知环对顺环以外的任何威特-伯恩赛德环进行了具体的解释。特别地,环wzp2 (k),其中k是特征为p > 0的域,其商被实现为p进上半平面p1 (Q p)上的Lipschitz连续函数环。因此,我们证明了环wz p d (k)的Krull维对于d≥2是无限的,并且我们证明了Teichmuller表示形成了zp上连续函数的van der Put基的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信