Floquet Theory for Linear Time-Periodic Delay Differential Equations Using Orthonormal History Functions

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Junaidvali Shaik, Sankalp Tiwari, C. P. Vyasarayani
{"title":"Floquet Theory for Linear Time-Periodic Delay Differential Equations Using Orthonormal History Functions","authors":"Junaidvali Shaik, Sankalp Tiwari, C. P. Vyasarayani","doi":"10.1115/1.4062633","DOIUrl":null,"url":null,"abstract":"\n In the usual approach to determining the stability of a time-periodic delay differential equation (DDE), the DDE is converted into an approximate system of time-periodic ordinary differential equations (ODEs) using Galerkin approximations. Later, Floquet theory is applied to these ODEs. Alternatively, semi-discretization-like approaches can be used to construct an approximate Floquet transition matrix (FTM) for a DDE. In this paper, we develop a method to obtain the FTM directly. Our approach is analogous to the Floquet theory for ODEs: we consider one polynomial basis function at a time as the history function and stack the coefficients of the corresponding DDE solutions to construct the FTM. The largest magnitude eigenvalue of the FTM determines the stability of the DDE. Since the obtained FTM is an approximation of the actual infinite-dimensional FTM, the criterion developed for stability is approximate. We demonstrate the correctness and efficacy of our method by studying several candidate DDEs with time-periodic parameters and comparing the results with those obtained from the Galerkin approximations.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062633","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the usual approach to determining the stability of a time-periodic delay differential equation (DDE), the DDE is converted into an approximate system of time-periodic ordinary differential equations (ODEs) using Galerkin approximations. Later, Floquet theory is applied to these ODEs. Alternatively, semi-discretization-like approaches can be used to construct an approximate Floquet transition matrix (FTM) for a DDE. In this paper, we develop a method to obtain the FTM directly. Our approach is analogous to the Floquet theory for ODEs: we consider one polynomial basis function at a time as the history function and stack the coefficients of the corresponding DDE solutions to construct the FTM. The largest magnitude eigenvalue of the FTM determines the stability of the DDE. Since the obtained FTM is an approximation of the actual infinite-dimensional FTM, the criterion developed for stability is approximate. We demonstrate the correctness and efficacy of our method by studying several candidate DDEs with time-periodic parameters and comparing the results with those obtained from the Galerkin approximations.
用正交历史函数求解线性时间周期时滞微分方程的Floquet理论
在确定时间周期时滞微分方程(DDE)稳定性的通常方法中,使用伽辽金近似将DDE转换为时间周期常微分方程(ode)的近似系统。随后,将Floquet理论应用到这些ode中。或者,半离散化方法可以用来构造一个近似的Floquet转移矩阵(FTM)的DDE。在本文中,我们开发了一种直接获得FTM的方法。我们的方法类似于ode的Floquet理论:我们每次考虑一个多项式基函数作为历史函数,并将相应DDE解的系数叠加以构建FTM。FTM的最大幅值特征值决定了DDE的稳定性。由于所得到的FTM是实际无限维FTM的近似值,因此所建立的稳定性判据也是近似值。我们通过研究几个具有时间周期参数的候选DDEs,并将结果与Galerkin近似的结果进行比较,证明了该方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
10.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信