Medial gastrocnemius muscle stiffness dependent on gait speed

Q4 Engineering
Yuto Matsue, T. Uchiyama
{"title":"Medial gastrocnemius muscle stiffness dependent on gait speed","authors":"Yuto Matsue, T. Uchiyama","doi":"10.11239/JSMBE.55ANNUAL.534","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to clarify the relationship between gastrocnemius muscle stiffness and gait speed. Eight males participated in this experiment and walked at 2, 3, 4, and 5 km/h on a treadmill. Electrical stimulation was percutaneously applied to the medial gastrocnemius muscle once every two push offs, and the mechanomyogram was measured. The evoked mechanomyogram was extracted by subtracting the walking vibration from the measured mechanomyogram. The evoked mechanomyogram system was identified using a singular value decomposition method, and the natural frequency was calculated from the transfer function. The natural frequency was used as an index of stiffness. Two natural frequencies increased as gait speed increased; however, one natural frequency did not. The increased natural frequencies might be related to the muscle contraction, and the unchanged frequency might be related to the skin and subcutaneous tissue. In conclusion, medial gastrocnemius muscle stiffness increased as gait speed increased.","PeriodicalId":39233,"journal":{"name":"Transactions of Japanese Society for Medical and Biological Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Japanese Society for Medical and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11239/JSMBE.55ANNUAL.534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The purpose of this study is to clarify the relationship between gastrocnemius muscle stiffness and gait speed. Eight males participated in this experiment and walked at 2, 3, 4, and 5 km/h on a treadmill. Electrical stimulation was percutaneously applied to the medial gastrocnemius muscle once every two push offs, and the mechanomyogram was measured. The evoked mechanomyogram was extracted by subtracting the walking vibration from the measured mechanomyogram. The evoked mechanomyogram system was identified using a singular value decomposition method, and the natural frequency was calculated from the transfer function. The natural frequency was used as an index of stiffness. Two natural frequencies increased as gait speed increased; however, one natural frequency did not. The increased natural frequencies might be related to the muscle contraction, and the unchanged frequency might be related to the skin and subcutaneous tissue. In conclusion, medial gastrocnemius muscle stiffness increased as gait speed increased.
内侧腓肠肌僵硬度与步态速度的关系
本研究的目的是阐明腓肠肌僵硬度与步态速度之间的关系。8名男性参加了这项实验,他们在跑步机上以每小时2、3、4和5公里的速度行走。每推2次,经皮电刺激腓肠肌内侧肌1次,测量肌力图。通过从测量的肌力图中减去行走振动提取诱发肌力图。采用奇异值分解方法对诱发肌图系统进行识别,并根据传递函数计算固有频率。采用固有频率作为刚度指标。两个固有频率随步态速度的增加而增加;然而,一个固有频率却没有。自然频率升高可能与肌肉收缩有关,频率不变可能与皮肤和皮下组织有关。综上所述,内侧腓肠肌僵硬度随步态速度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信