Interleaved Group Convolutions

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang
{"title":"Interleaved Group Convolutions","authors":"Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang","doi":"10.1109/ICCV.2017.469","DOIUrl":null,"url":null,"abstract":"In this paper, we present a simple and modularized neural network architecture, named interleaved group convolutional neural networks (IGCNets). The main point lies in a novel building block, a pair of two successive interleaved group convolutions: primary group convolution and secondary group convolution. The two group convolutions are complementary: (i) the convolution on each partition in primary group convolution is a spatial convolution, while on each partition in secondary group convolution, the convolution is a point-wise convolution; (ii) the channels in the same secondary partition come from different primary partitions. We discuss one representative advantage: Wider than a regular convolution with the number of parameters and the computation complexity preserved. We also show that regular convolutions, group convolution with summation fusion, and the Xception block are special cases of interleaved group convolutions. Empirical results over standard benchmarks, CIFAR-10, CIFAR-100, SVHN and ImageNet demonstrate that our networks are more efficient in using parameters and computation complexity with similar or higher accuracy.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"224 1","pages":"4383-4392"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"216","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 216

Abstract

In this paper, we present a simple and modularized neural network architecture, named interleaved group convolutional neural networks (IGCNets). The main point lies in a novel building block, a pair of two successive interleaved group convolutions: primary group convolution and secondary group convolution. The two group convolutions are complementary: (i) the convolution on each partition in primary group convolution is a spatial convolution, while on each partition in secondary group convolution, the convolution is a point-wise convolution; (ii) the channels in the same secondary partition come from different primary partitions. We discuss one representative advantage: Wider than a regular convolution with the number of parameters and the computation complexity preserved. We also show that regular convolutions, group convolution with summation fusion, and the Xception block are special cases of interleaved group convolutions. Empirical results over standard benchmarks, CIFAR-10, CIFAR-100, SVHN and ImageNet demonstrate that our networks are more efficient in using parameters and computation complexity with similar or higher accuracy.
交错群卷积
本文提出了一种简单的模块化神经网络结构,称为交错群卷积神经网络(IGCNets)。重点在于一个新的构建块,一对两个连续的交错群卷积:主群卷积和次群卷积。这两个群卷积是互补的:(i)在初级群卷积中,每个分区上的卷积是一个空间卷积,而在次级群卷积中,每个分区上的卷积是一个点向卷积;(ii)同一辅助分区中的通道来自不同的主分区。我们讨论了一个代表性的优点:比常规卷积更宽,参数的数量和计算复杂度保持不变。我们还证明了正则卷积、带求和融合的群卷积和例外块是交错群卷积的特殊情况。在标准基准,CIFAR-10, CIFAR-100, SVHN和ImageNet上的经验结果表明,我们的网络在使用参数和计算复杂度方面更有效,具有相似或更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信