{"title":"Influential degree of polymerization of sugar extraction on alkali pretreatment from sunflower stalk wastes by applied statistical modelling","authors":"Numchok Manmai, Nuttapong Saetang, Yuwalee Unpaprom, Keng-Tung Wu","doi":"10.54279/mijeec.v1i2.244917","DOIUrl":null,"url":null,"abstract":"This paper presents application of influence of degree of polymerization (DP) on optimally pretreated using a response surface methodology (RSM) approach for decreased DP level of optimal chemical and biological pretreatments from sunflower stalk. All experiments in this paper are applied by statistical designs for developing a statistic multifunction analysis model that focus on the effect of dissimilar factors for describing of the optimum values of the changed surface response on any variables. The process parameters of chemical model (Sodium Hydroxide concentration and Time) to pretreat for DP. The chemical pretreatment model was certified by 13 runs, at two factors, NaOH (1, 1.5, 2%) and Day (1, 2, 3) by central composite design (CCD). DP value of the chemical model was estimated by a Design Expert program version 11 trial: chemical model of DP highest and lowest of 25.80 and 6.16, consecutively. The aim of this experiments to investigate only DP from the chemical model of pretreatment. The procedure there are effective on sugar conversion and DP of the lignocellulosic biomass. Which pretreatment is a challenge for cost and competitive technology on large-scale of fermentable sugar in the step of hydrolysis.","PeriodicalId":18176,"journal":{"name":"Maejo International Journal of Energy and Environmental Communication","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maejo International Journal of Energy and Environmental Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54279/mijeec.v1i2.244917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents application of influence of degree of polymerization (DP) on optimally pretreated using a response surface methodology (RSM) approach for decreased DP level of optimal chemical and biological pretreatments from sunflower stalk. All experiments in this paper are applied by statistical designs for developing a statistic multifunction analysis model that focus on the effect of dissimilar factors for describing of the optimum values of the changed surface response on any variables. The process parameters of chemical model (Sodium Hydroxide concentration and Time) to pretreat for DP. The chemical pretreatment model was certified by 13 runs, at two factors, NaOH (1, 1.5, 2%) and Day (1, 2, 3) by central composite design (CCD). DP value of the chemical model was estimated by a Design Expert program version 11 trial: chemical model of DP highest and lowest of 25.80 and 6.16, consecutively. The aim of this experiments to investigate only DP from the chemical model of pretreatment. The procedure there are effective on sugar conversion and DP of the lignocellulosic biomass. Which pretreatment is a challenge for cost and competitive technology on large-scale of fermentable sugar in the step of hydrolysis.