A block preconditioner for two-phase flow in porous media by mixed hybrid finite elements

IF 0.9 Q3 MATHEMATICS, APPLIED
Stefano Nardean, Massimiliano Ferronato, Ahmad S. Abushaikha
{"title":"A block preconditioner for two-phase flow in porous media by mixed hybrid finite elements","authors":"Stefano Nardean,&nbsp;Massimiliano Ferronato,&nbsp;Ahmad S. Abushaikha","doi":"10.1002/cmm4.1207","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present an original block preconditioner to improve the convergence of Krylov solvers for the simulation of two-phase flow in porous media. In our modeling approach, the set of coupled governing equations is addressed in a fully implicit fashion, where Darcy's law and mass conservation are discretized in an original way by combining the mixed hybrid finite element (MHFE) and the finite volume (FV) methods. The solution to the sequence of large-size nonsymmetric linearized systems of equations that stem during a full-transient simulation represents the most time and resource consuming task, thus motivating the need for efficient preconditioned Krylov solvers. The proposed preconditioner exploits the block structure of the Jacobian matrix while coping with the nonsymmetric nature of the individual blocks. Both academic and realistic applications have been used to challenge the preconditioner, allowing to point out its robustness, stability and overall computational efficiency.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1207","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we present an original block preconditioner to improve the convergence of Krylov solvers for the simulation of two-phase flow in porous media. In our modeling approach, the set of coupled governing equations is addressed in a fully implicit fashion, where Darcy's law and mass conservation are discretized in an original way by combining the mixed hybrid finite element (MHFE) and the finite volume (FV) methods. The solution to the sequence of large-size nonsymmetric linearized systems of equations that stem during a full-transient simulation represents the most time and resource consuming task, thus motivating the need for efficient preconditioned Krylov solvers. The proposed preconditioner exploits the block structure of the Jacobian matrix while coping with the nonsymmetric nature of the individual blocks. Both academic and realistic applications have been used to challenge the preconditioner, allowing to point out its robustness, stability and overall computational efficiency.

多孔介质中两相流的混合有限元块预调节器
在这项工作中,我们提出了一个原始的块预调节器,以改善多孔介质中两相流模拟的Krylov求解的收敛性。在我们的建模方法中,耦合控制方程集以完全隐式的方式进行处理,其中达西定律和质量守恒通过混合混合有限元(MHFE)和有限体积(FV)方法以原始方式离散化。在全瞬态模拟过程中,求解大型非对称线性化方程组序列是最耗时、最耗资源的任务,因此需要高效的预处理Krylov求解器。提出的预条件利用了雅可比矩阵的块结构,同时处理了单个块的非对称性质。学术和实际应用都对预条件提出了挑战,证明了它的鲁棒性、稳定性和整体计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信