{"title":"Asymptotic derivation of multicomponent compressible flows with heat conduction and mass diffusion","authors":"S. Georgiadis, A. Tzavaras","doi":"10.1051/m2an/2022065","DOIUrl":null,"url":null,"abstract":"A Type-I model of a multicomponent system of fluids with non-constant temperature is derived as the high-friction limit of a Type-II model via a Chapman-Enskog expansion. The asymptotic model is shown to fit into the general theory of hyperbolic-parabolic systems, by exploiting the entropy structure inherited through the asymptotic procedure. Finally, by deriving the relative entropy identity for the Type-I model, two convergence results for smooth solutions are presented, from the system with mass-diffusion and heat conduction to the corresponding system without mass-diffusion but including heat conduction and to its hyperbolic counterpart.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022065","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
A Type-I model of a multicomponent system of fluids with non-constant temperature is derived as the high-friction limit of a Type-II model via a Chapman-Enskog expansion. The asymptotic model is shown to fit into the general theory of hyperbolic-parabolic systems, by exploiting the entropy structure inherited through the asymptotic procedure. Finally, by deriving the relative entropy identity for the Type-I model, two convergence results for smooth solutions are presented, from the system with mass-diffusion and heat conduction to the corresponding system without mass-diffusion but including heat conduction and to its hyperbolic counterpart.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.