{"title":"On flexibility of constraints system under approximation of optimal control problems","authors":"A. Chernov","doi":"10.35634/2226-3594-2022-59-08","DOIUrl":null,"url":null,"abstract":"For finite-dimensional mathematical programming problems (approximating problems) being obtained by a parametric approximation of control functions in lumped optimal control problems with functional equality constraints, we introduce concepts of rigidity and flexibility for a system of constraints. The rigidity in a given admissible point is treated in the sense that this point is isolated for the admissible set; otherwise, we call a system of constraints as flexible in this point. Under using a parametric approximation for a control function with the help of quadratic exponentials (Gaussian functions) and subject to some natural hypotheses, we establish that in order to guarantee the flexibility of constraints system in a given admissible point it suffices to increase the dimension of parameter space in the approximating problem. A test of our hypotheses is illustrated by an example of the soft lunar landing problem.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"2 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2022-59-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For finite-dimensional mathematical programming problems (approximating problems) being obtained by a parametric approximation of control functions in lumped optimal control problems with functional equality constraints, we introduce concepts of rigidity and flexibility for a system of constraints. The rigidity in a given admissible point is treated in the sense that this point is isolated for the admissible set; otherwise, we call a system of constraints as flexible in this point. Under using a parametric approximation for a control function with the help of quadratic exponentials (Gaussian functions) and subject to some natural hypotheses, we establish that in order to guarantee the flexibility of constraints system in a given admissible point it suffices to increase the dimension of parameter space in the approximating problem. A test of our hypotheses is illustrated by an example of the soft lunar landing problem.