Volume Reconstruction for Light Field Microscopy

Herman Verinaz-Jadan, P. Song, Carmel L. Howe, Amanda J. Foust, P. Dragotti
{"title":"Volume Reconstruction for Light Field Microscopy","authors":"Herman Verinaz-Jadan, P. Song, Carmel L. Howe, Amanda J. Foust, P. Dragotti","doi":"10.1109/ICASSP40776.2020.9053433","DOIUrl":null,"url":null,"abstract":"Light Field Microscopy (LFM) is a 3D imaging technique that captures volumetric information in a single snapshot. It is appealing in microscopy because of its simple implementation and the peculiarity that it is much faster than methods involving scanning. However, volume reconstruction for LFM suffers from low lateral resolution, high computational cost, and reconstruction artifacts near the native object plane. In this work, we make two contributions. First, we propose a simplification of the forward model based on a novel discretization approach that allows us to accelerate the computation without drastically increasing memory consumption. Second, we experimentally show that by including regularization priors and an appropriate initialization strategy, it is possible to remove the artifacts near the native object plane. The algorithm we use for this is ADMM. Finally, the combination of the two techniques leads to a method that outperforms classic volume reconstruction approaches (variants of Richardson-Lucy) in terms of average computational time and image quality (PSNR).","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"40 1","pages":"1459-1463"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Light Field Microscopy (LFM) is a 3D imaging technique that captures volumetric information in a single snapshot. It is appealing in microscopy because of its simple implementation and the peculiarity that it is much faster than methods involving scanning. However, volume reconstruction for LFM suffers from low lateral resolution, high computational cost, and reconstruction artifacts near the native object plane. In this work, we make two contributions. First, we propose a simplification of the forward model based on a novel discretization approach that allows us to accelerate the computation without drastically increasing memory consumption. Second, we experimentally show that by including regularization priors and an appropriate initialization strategy, it is possible to remove the artifacts near the native object plane. The algorithm we use for this is ADMM. Finally, the combination of the two techniques leads to a method that outperforms classic volume reconstruction approaches (variants of Richardson-Lucy) in terms of average computational time and image quality (PSNR).
光场显微镜的体积重建
光场显微镜(LFM)是一种3D成像技术,可以在单个快照中捕获体积信息。它在显微镜中很有吸引力,因为它的实现简单,而且比涉及扫描的方法快得多。然而,LFM的体积重建存在横向分辨率低、计算成本高、重建伪影靠近目标平面等问题。在这项工作中,我们有两个贡献。首先,我们提出了一种基于新的离散化方法的前向模型的简化,该方法允许我们在不大幅增加内存消耗的情况下加速计算。其次,我们通过实验表明,通过包含正则化先验和适当的初始化策略,可以去除本机对象平面附近的工件。我们使用的算法是ADMM。最后,两种技术的结合产生了一种在平均计算时间和图像质量(PSNR)方面优于经典体积重建方法(Richardson-Lucy的变体)的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信