{"title":"Tropical cycle classes for non-archimedean spaces and weight decomposition of De Rham cohomology sheaves","authors":"Yifeng Liu","doi":"10.24033/asens.2423","DOIUrl":null,"url":null,"abstract":"This article has three major goals. First, we define tropical cycle class maps for smooth varieties over non-Archimedean fields, valued in the Dolbeault cohomology defined in terms of real forms introduced by Chambert-Loir and Ducros. Second, we construct a functorial decomposition of de Rham cohomology sheaves, called weight decomposition, for smooth analytic spaces over certain non-Archimedean fields of characteristic zero, which generalizes a construction of Berkovich and solves a question raised by himself. Third, we reveal a connection between the tropical theory and the algebraic de Rham theory. As an application, we show that algebraic cycles that are trivial in the algebraic de Rham cohomology are trivial as currents for Dolbeault cohomology as well.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"26 1","pages":"291-352"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/asens.2423","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
This article has three major goals. First, we define tropical cycle class maps for smooth varieties over non-Archimedean fields, valued in the Dolbeault cohomology defined in terms of real forms introduced by Chambert-Loir and Ducros. Second, we construct a functorial decomposition of de Rham cohomology sheaves, called weight decomposition, for smooth analytic spaces over certain non-Archimedean fields of characteristic zero, which generalizes a construction of Berkovich and solves a question raised by himself. Third, we reveal a connection between the tropical theory and the algebraic de Rham theory. As an application, we show that algebraic cycles that are trivial in the algebraic de Rham cohomology are trivial as currents for Dolbeault cohomology as well.
期刊介绍:
The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics.
Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition.
The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.