A Linear Algorithm for Computing $gamma_{[1,2]}$-set in Generalized Series-Parallel Graphs

IF 0.6 Q3 MATHEMATICS
P. Sharifani, M. R. Hooshmandasl
{"title":"A Linear Algorithm for Computing $gamma_{[1,2]}$-set in Generalized Series-Parallel Graphs","authors":"P. Sharifani, M. R. Hooshmandasl","doi":"10.22108/TOC.2019.105482.1509","DOIUrl":null,"url":null,"abstract":"For a graph $G=(V,E)$, a set $S subseteq V$ is a $[1,2]$-set if it is a dominating set for $G$ and each vertex $v in V setminus S$ is dominated by at most two vertices of $S$, i.e. $1 leq vert N(v) cap S vert leq 2$. Moreover a set $S subseteq V$ is a total $[1,2]$-set if for each vertex of $V$, it is the case that $1 leq vert N(v) cap S vert leq 2$. The $[1,2]$-domination number of $G$, denoted $gamma_{[1,2]}(G)$, is the minimum number of vertices in a $[1,2]$-set. Every $[1,2]$-set with cardinality of $gamma_{[1,2]}(G)$ is called a $gamma_{[1,2]}$-set. Total $[1,2]$-domination number and $gamma_{t[1,2]}$-sets of $G$ are defined in a similar way. This paper presents a linear time algorithm to find a $gamma_{[1,2]}$-set and a $gamma_{t[1,2]}$-set in generalized series-parallel graphs.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"18 1","pages":"1-24"},"PeriodicalIF":0.6000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.105482.1509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph $G=(V,E)$, a set $S subseteq V$ is a $[1,2]$-set if it is a dominating set for $G$ and each vertex $v in V setminus S$ is dominated by at most two vertices of $S$, i.e. $1 leq vert N(v) cap S vert leq 2$. Moreover a set $S subseteq V$ is a total $[1,2]$-set if for each vertex of $V$, it is the case that $1 leq vert N(v) cap S vert leq 2$. The $[1,2]$-domination number of $G$, denoted $gamma_{[1,2]}(G)$, is the minimum number of vertices in a $[1,2]$-set. Every $[1,2]$-set with cardinality of $gamma_{[1,2]}(G)$ is called a $gamma_{[1,2]}$-set. Total $[1,2]$-domination number and $gamma_{t[1,2]}$-sets of $G$ are defined in a similar way. This paper presents a linear time algorithm to find a $gamma_{[1,2]}$-set and a $gamma_{t[1,2]}$-set in generalized series-parallel graphs.
广义串并联图中$gamma_{[1,2]}$-集的一种线性算法
对于图$G=(V,E)$,如果集合$S subseteq V$是$G$的支配集,并且V set- S$中的每个顶点$ V最多被$S$的两个顶点支配,即$1 leq vert N(V) cap S vert leq 2$,则该集合$S subseteq V$是$[1,2]$-set。此外,集合$S subseteq V$是一个总$[1,2]$-如果对于$V$的每个顶点,则$1 leq vert N(V) cap S vert leq 2$。$G$的$[1,2]$支配数,表示$gamma_{[1,2]}(G)$,是$[1,2]$-集合中的最小顶点数。每一个基数为$gamma_{[1,2]}(G)$的$[1,2]$-集称为$gamma_{[1,2]}$-集。Total $[1,2]$-domination number和$gamma_{t[1,2]}$-set of $G$以类似的方式定义。本文给出了一种求广义序列-并行图中$gamma_{[1,2]}$-集和$gamma_{t[1,2]}$-集的线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信