Pemodelan Machine Learning untuk Memprediksi Tensile Strength Aluminium Menggunakan Algoritma Artificial Neural Network (ANN)

D. Leni, Helga Yermadona, Ade Usra Berli, R. Sumiati, Haris Haris
{"title":"Pemodelan Machine Learning untuk Memprediksi Tensile Strength Aluminium Menggunakan Algoritma Artificial Neural Network (ANN)","authors":"D. Leni, Helga Yermadona, Ade Usra Berli, R. Sumiati, Haris Haris","doi":"10.37859/jst.v10i1.4843","DOIUrl":null,"url":null,"abstract":"This research designs a machine learning model using an Artificial Neural Network (ANN) algorithm to predict the tensile strength of aluminum. This research produces a machine learning model that has 8 (eight) input data variables consisting of the percentage of aluminum chemical composition such as Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and 1 output (output), namely aluminum tensile strength. This study makes changes to several variations of parameters, such as variations in the number of split data, training cycles, learning rates, and hidden neurons. This Artificial Neural Network (ANN) modeling produces an RMSE value of 15,383 with the best parameters being split into 60 training and 40 testing data, training cycle of 100, learning rate of 0.08, momentum 0.9, and hidden neuron 7.This research designs a machine learning model using an Artificial Neural Network (ANN) algorithm to predict the tensile strength of aluminum. This research produces a machine learning model that has 8 (eight) input data variables consisting of the percentage of aluminum chemical composition such as Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and 1 output (output), namely aluminum tensile strength. This study makes changes to several variations of parameters, such as variations in the number of split data, training cycles, learning rates, and hidden neurons. This Artificial Neural Network (ANN) modeling produces an RMSE value of 15,383 with the best parameters being split into 60 training and 40 testing data, training cycle of 100, learning rate of 0.08, momentum 0.9, and hidden neuron 7.","PeriodicalId":17743,"journal":{"name":"Jurnal Surya Teknika","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Surya Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37859/jst.v10i1.4843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research designs a machine learning model using an Artificial Neural Network (ANN) algorithm to predict the tensile strength of aluminum. This research produces a machine learning model that has 8 (eight) input data variables consisting of the percentage of aluminum chemical composition such as Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and 1 output (output), namely aluminum tensile strength. This study makes changes to several variations of parameters, such as variations in the number of split data, training cycles, learning rates, and hidden neurons. This Artificial Neural Network (ANN) modeling produces an RMSE value of 15,383 with the best parameters being split into 60 training and 40 testing data, training cycle of 100, learning rate of 0.08, momentum 0.9, and hidden neuron 7.This research designs a machine learning model using an Artificial Neural Network (ANN) algorithm to predict the tensile strength of aluminum. This research produces a machine learning model that has 8 (eight) input data variables consisting of the percentage of aluminum chemical composition such as Mg, Zn, Ti, Cu, Mn, Cr, Fe, Si, and 1 output (output), namely aluminum tensile strength. This study makes changes to several variations of parameters, such as variations in the number of split data, training cycles, learning rates, and hidden neurons. This Artificial Neural Network (ANN) modeling produces an RMSE value of 15,383 with the best parameters being split into 60 training and 40 testing data, training cycle of 100, learning rate of 0.08, momentum 0.9, and hidden neuron 7.
Pemodelan Machine Learning untuk Memprediksi拉伸强度铝
本研究利用人工神经网络(ANN)算法设计了一种机器学习模型来预测铝的抗拉强度。本研究产生了一个机器学习模型,该模型有8(8)个输入数据变量,由铝的化学成分如Mg、Zn、Ti、Cu、Mn、Cr、Fe、Si的百分比组成,以及1个输出(output),即铝的抗拉强度。这项研究改变了几个参数的变化,比如分割数据的数量、训练周期、学习率和隐藏神经元的变化。该人工神经网络(ANN)建模产生的RMSE值为15,383,最佳参数分为60个训练数据和40个测试数据,训练周期为100,学习率为0.08,动量为0.9,隐藏神经元为7。本研究利用人工神经网络(ANN)算法设计了一种机器学习模型来预测铝的抗拉强度。本研究产生了一个机器学习模型,该模型有8(8)个输入数据变量,由铝的化学成分如Mg、Zn、Ti、Cu、Mn、Cr、Fe、Si的百分比组成,以及1个输出(output),即铝的抗拉强度。这项研究改变了几个参数的变化,比如分割数据的数量、训练周期、学习率和隐藏神经元的变化。该人工神经网络(ANN)建模产生的RMSE值为15,383,最佳参数分为60个训练数据和40个测试数据,训练周期为100,学习率为0.08,动量为0.9,隐藏神经元为7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信