Numerical Modeling of Hole Under Opposite Biaxial Loadings

M. Bouali
{"title":"Numerical Modeling of Hole Under Opposite Biaxial Loadings","authors":"M. Bouali","doi":"10.1515/sspjce-2020-0010","DOIUrl":null,"url":null,"abstract":"Abstract The exact concentration of the stress generated by the presence of a cavity is a problem of great significance in Mining and Civil Engineering. An interesting stress concentration problem is the biaxial one. A numerical analysis of stress around a cylindrical hole in an infinite elastic medium under opposite biaxial loading was investigated. This far-field loading is equivalent to a pure shear loading on planes rotated 45°. Analysis consisted of two-dimensional finite-difference computations carried out with the Fast Lagrangian of Continua (FLAC) code. The Stress Concentration Factor (SFC) is evaluated numerically and compared with the existing solution. Predicted results of stress distribution around the hole were found in good agreement with the analytic theory.","PeriodicalId":30755,"journal":{"name":"Selected Scientific Papers Journal of Civil Engineering","volume":"13 1","pages":"103 - 112"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selected Scientific Papers Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/sspjce-2020-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The exact concentration of the stress generated by the presence of a cavity is a problem of great significance in Mining and Civil Engineering. An interesting stress concentration problem is the biaxial one. A numerical analysis of stress around a cylindrical hole in an infinite elastic medium under opposite biaxial loading was investigated. This far-field loading is equivalent to a pure shear loading on planes rotated 45°. Analysis consisted of two-dimensional finite-difference computations carried out with the Fast Lagrangian of Continua (FLAC) code. The Stress Concentration Factor (SFC) is evaluated numerically and compared with the existing solution. Predicted results of stress distribution around the hole were found in good agreement with the analytic theory.
反向双轴载荷作用下孔的数值模拟
空腔产生的应力的准确集中是采矿和土木工程中一个具有重要意义的问题。一个有趣的应力集中问题是双轴应力集中问题。研究了无限弹性介质中圆柱孔在反向双轴载荷作用下的应力问题。这种远场载荷相当于旋转45°平面上的纯剪切载荷。分析包括使用快速连续拉格朗日(FLAC)程序进行二维有限差分计算。对应力集中系数(SFC)进行了数值计算,并与已有解进行了比较。孔周应力分布预测结果与解析理论吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信