On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods

P. Hall, Prakash N. Patil
{"title":"On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods","authors":"P. Hall, Prakash N. Patil","doi":"10.1111/J.2517-6161.1996.TB02087.X","DOIUrl":null,"url":null,"abstract":"SUMMARY Concise asymptotic theory is developed for non-linear wavelet estimators of regression means, in the context of general error distributions, general designs, general normalizations in the case of stochastic design, and non-structural assumptions about the mean. The influence of the tail weight of the error distribution is addressed in the setting of choosing threshold and truncation parameters. Mainly, the tail weight is described in an extremely simple way, by a moment condition; previous work on this topic has generally imposed the much more stringent assumption that the error distribution be normal. Different approaches to correction for stochastic design are suggested. These include conventional kernel estimation of the design density, in which case the interaction between the smoothing parameters of the non-linear wavelet estimator and the linear kernel method is described.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"16 1","pages":"361-377"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1996.TB02087.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

SUMMARY Concise asymptotic theory is developed for non-linear wavelet estimators of regression means, in the context of general error distributions, general designs, general normalizations in the case of stochastic design, and non-structural assumptions about the mean. The influence of the tail weight of the error distribution is addressed in the setting of choosing threshold and truncation parameters. Mainly, the tail weight is described in an extremely simple way, by a moment condition; previous work on this topic has generally imposed the much more stringent assumption that the error distribution be normal. Different approaches to correction for stochastic design are suggested. These include conventional kernel estimation of the design density, in which case the interaction between the smoothing parameters of the non-linear wavelet estimator and the linear kernel method is described.
非线性小波方法在非参数回归中平滑参数、阈值和截断的选择
在一般误差分布、一般设计、随机设计情况下的一般归一化和关于均值的非结构性假设的背景下,为回归均值的非线性小波估计建立了简明的渐近理论。在选择阈值和截断参数时,解决了误差分布尾权的影响。主要是用一种非常简单的方式,用一个力矩条件来描述尾重;以前关于这个主题的工作通常强加了更严格的假设,即误差分布是正态的。对随机设计提出了不同的校正方法。其中包括设计密度的常规核估计,在这种情况下,描述了非线性小波估计器的平滑参数与线性核方法之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信