Iqra Fatima, H. Ejaz, M. Nigar, D. Rizwan, Aqeel A. Khurram
{"title":"Correlation between toughness and metal volume fraction in carbon-glass fiber laminates tested under tensile loading","authors":"Iqra Fatima, H. Ejaz, M. Nigar, D. Rizwan, Aqeel A. Khurram","doi":"10.1080/09276440.2023.2189352","DOIUrl":null,"url":null,"abstract":"ABSTRACT The conducted work investigates the correlation between toughness characteristics and metal volume fraction in Fiber Metal Laminates (FMLs) subjected to tensile loads. Aerospace grade Al 7075-T6 was utilized as the varying metal alloy in the study. The metal alloy was combined with glass and carbon fiber layers to create different configurations of FMLs with varying stacking sequences. For better adhesion between metal and composite parts, aluminum layers were etched with sodium hydroxide and chromic-sulfuric acid solutions. The laminate sheets were prepared using the hand layup method which was followed by a vacuum bagging process. Specimens were cut and tested as per ASTM standard. Results of the experimentation showed that the aluminum volume fraction is directly related to the failure strain and modulus of toughness, however, inversely proportional to the stiffness characteristics of the laminates. The highest improvement of 111% in toughness parameter in comparison to pure composite laminate was reported. Finally, a comprehensive analysis on the type of fracture behavior in comparison to classical laminate theory was critically discussed. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2189352","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The conducted work investigates the correlation between toughness characteristics and metal volume fraction in Fiber Metal Laminates (FMLs) subjected to tensile loads. Aerospace grade Al 7075-T6 was utilized as the varying metal alloy in the study. The metal alloy was combined with glass and carbon fiber layers to create different configurations of FMLs with varying stacking sequences. For better adhesion between metal and composite parts, aluminum layers were etched with sodium hydroxide and chromic-sulfuric acid solutions. The laminate sheets were prepared using the hand layup method which was followed by a vacuum bagging process. Specimens were cut and tested as per ASTM standard. Results of the experimentation showed that the aluminum volume fraction is directly related to the failure strain and modulus of toughness, however, inversely proportional to the stiffness characteristics of the laminates. The highest improvement of 111% in toughness parameter in comparison to pure composite laminate was reported. Finally, a comprehensive analysis on the type of fracture behavior in comparison to classical laminate theory was critically discussed. GRAPHICAL ABSTRACT
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields