{"title":"Charge radii of exotic neon and magnesium isotopes","authors":"S. Novario, G. Hagen, G. Jansen, T. Papenbrock","doi":"10.1103/physrevc.102.051303","DOIUrl":null,"url":null,"abstract":"We compute the charge radii of even-mass neon and magnesium isotopes from neutron number N = 8 to the dripline. Our calculations are based on nucleon-nucleon and three-nucleon potentials from chiral effective field theory that include delta isobars. These potentials yield an accurate saturation point and symmetry energy of nuclear matter. We use the coupled-cluster method and start from an axially symmetric reference state. Binding energies and two-neutron separation energies largely agree with data and the dripline in neon is accurate. The computed charge radii have an estimated uncertainty of about 2-3% and are accurate for many isotopes where data exist. Finer details such as isotope shifts, however, are not accurately reproduced. Chiral potentials correctly yield the subshell closure at N = 14 and also a decrease in charge radii at N = 8 (observed in neon and predicted for magnesium). They yield a continued increase of charge radii as neutrons are added beyond N = 14 yet underestimate the large increase at N = 20 in magnesium.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevc.102.051303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
We compute the charge radii of even-mass neon and magnesium isotopes from neutron number N = 8 to the dripline. Our calculations are based on nucleon-nucleon and three-nucleon potentials from chiral effective field theory that include delta isobars. These potentials yield an accurate saturation point and symmetry energy of nuclear matter. We use the coupled-cluster method and start from an axially symmetric reference state. Binding energies and two-neutron separation energies largely agree with data and the dripline in neon is accurate. The computed charge radii have an estimated uncertainty of about 2-3% and are accurate for many isotopes where data exist. Finer details such as isotope shifts, however, are not accurately reproduced. Chiral potentials correctly yield the subshell closure at N = 14 and also a decrease in charge radii at N = 8 (observed in neon and predicted for magnesium). They yield a continued increase of charge radii as neutrons are added beyond N = 14 yet underestimate the large increase at N = 20 in magnesium.