Implicit Entity Recognition, Classification and Linking in Tweets

Hawre Hosseini
{"title":"Implicit Entity Recognition, Classification and Linking in Tweets","authors":"Hawre Hosseini","doi":"10.1145/3331184.3331416","DOIUrl":null,"url":null,"abstract":"Linking phrases to knowledge base entities is a process known as entity linking and has already been widely explored for various content types such as tweets. A major step in entity linking is to recognize and/or classify phrases that can be disambiguated and linked to knowledge base entities, i.e., Named Entity Recognition and Classification. Unlike common entity recognition and linking systems, however, we aim to recognize, classify, and link entities which are implicitly mentioned, and hence lack a surface form, to appropriate knowledge base entries. In other words, the objective of our work is to recognize and identify core entities of a tweet when those entities are not explicitly mentioned; this process is referred to as Implicit Named Entity Recognition and Linking.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Linking phrases to knowledge base entities is a process known as entity linking and has already been widely explored for various content types such as tweets. A major step in entity linking is to recognize and/or classify phrases that can be disambiguated and linked to knowledge base entities, i.e., Named Entity Recognition and Classification. Unlike common entity recognition and linking systems, however, we aim to recognize, classify, and link entities which are implicitly mentioned, and hence lack a surface form, to appropriate knowledge base entries. In other words, the objective of our work is to recognize and identify core entities of a tweet when those entities are not explicitly mentioned; this process is referred to as Implicit Named Entity Recognition and Linking.
推文中的隐式实体识别、分类和链接
将短语链接到知识库实体是一个被称为实体链接的过程,并且已经被广泛地用于各种内容类型,如tweets。实体链接的一个主要步骤是识别和/或分类可以消除歧义并链接到知识库实体的短语,即命名实体识别和分类。然而,与常见的实体识别和链接系统不同,我们的目标是识别、分类和链接隐含提及的实体,因此缺乏表面形式,以适当的知识库条目。换句话说,我们工作的目标是在没有明确提及的情况下识别和识别推文的核心实体;这个过程被称为隐式命名实体识别和链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信